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CHAPTER I 

INTRODUCTION 

This thesis describes a beam dynamics experiment (E778) performed in the Fermi- 

lab Tevatron. Experiment E778 was motivated by the desire to reduce uncertainties 

in the design of the 40 TeV center-of-mass energy Superconducting Super Collider 

WC) [Il. 
Controlled nonlinear elements added in the Tevatron, created the nonlinear en- 

vironment anticipated in the SSC. Observations were made which are applicable to 

areas of physics much broader than accelerator physics, since they relate to the phase- 

space description of nonlinear oscillations. Those features are described in this work. 

The subject of this thesis, then, is the study, both experimental and theoretical, of a 

Hamiltonian system and its Poincare map, an object described later. 

The new element of this study is the experimental demonstration of theoretically 

predicted phase-space features, in particular the new state of the accelerator, with 

particles captured on nonlinear resonance islands. 

There have been two experimental runs to date, in May 1987 [2] and in Febru- 

ary 1988 [3,4,5,6], and there are plans for continuing studies. The work described 

here is the cumulative effort of many individuals. My contribution was restricted to 

participating in the data acquisition and data analysis. One of the simulation codes 

(ART) was written by me. I am also responsible for the theoretical discussion and 

I 
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derivations using the canonical Hamiltonian formalism. 

In order to put the significance of this work into its historical and scientific con- 

text, a brief overview of high energy physics accelerators is presented first. Next the 

motivation for this study is discussed, and much of the terminology is introduced 

when the structure of the thesis is explained. 

History of High Energy Physics Accelerators 

Some of the fundamental questions of high energy physics lead to the understand- 

ing of the marvelous complexity of the physical world in basic terms. High energy 

physics is both a theoretical and an experimental science, but its progress is largely 

paced by the technology of its accelerator and detectors. Accelerators are instru- 

ments for producing the reactions that reveal the basic material entities and their 

interactions. 

The history of accelerators is one of generations. Each generation corresponds 

to the invention of a new device, which is subsequently replaced by another, more 

powerful innovation. The electrostatic accelerators, typical example of which is the 

Van de Graaff machine, were followed by the cyclotron which was based on the concept 

of time varying accelerating fields. Next, the weak focusing notion as a mechanism 

for beam confinement was introduced through the betatron, an accelerator based on 

electromagnetic induction. The synchrocyclotron took the lead next and the concept 

of longitudinal phase space stability was introduced. 

In 1952 a new idea was advanced by Courant, Livingston and Snyder (suggested 

two years earlier by Christoflos but not published): the alternating-gradient focusing, 

or strong-focusing [ll]. This technique allowed particles to circulate in the machine, 

called synchrotron, for millions of orbits. The combination of the strong-focusing 

concept Andy the phase stability led to controlled acceleration to high energies. 

The storage ring is now the highest energy accelerator. The largest energy in 
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the center of mass, 1.8 TeV, is currently achieved in the Tevatron, located at Fermi 

National Accelerator Laboratory (Fermilab). The Tevatron, with its one-kilometer 

radius, is a proton-antiproton collider, like CERN’s Sp$ collider. The proposed SSC 

will be a proton-proton collider. Its design energy is 22 times larger than that of the 

Tevatron and its circumference is 53 miles. 

Motivation of Thesis 

The bending magnets of the SSC, approximately 8000, represent a significant 

fraction of the total project cost. The magnet cost grows with the size of the aperture 

provided for the beam. Hence a critical parameter in the optimization of the SSC 

design is the ‘magnet aperture’ [7]. In order to optimize the SSC design, the aperture- 

size must be chosen (a) to minimize the cost and (b) to provide a high confidence 

level in achieving the design performance goal. If the chosen aperture is too large, 

the design will not be cost effective. Too small an aperture will cause difficulties in 

operation. The value chosen for the aperture in the SSC Conceptual Design Report [l] 

is based on accelerator theory, past experience and extensive computer simulations. 

Due to the great importance of this result, an experimental study of the aperture was 

suggested in order to evaluate the design as well as to improve the criteria for the 

determination of a magnet aperture. The Tevatron was chosen for this experimental 

study for reasons that will soon be described. 

In the SSC the effective aperture will be determined by nonlinearities in the mag- 

netic field [1,7]. By intentionally adding nonlinear elements into the Tevatron, one 

could “mock up” some nonlinear features anticipated for the SSC. Experiment E778 

addressed the question of studying the particle motion under the influence of con- 

trolled nonlinearities in the Tevatron. 
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Structure of Thesis 

The one-degree-of-freedom equation of motion of a particle in a storage ring, in 

the presence of sextupole magnets, is given by 

8X 
-p + K(s)X = -E(S)F, (1.1) 

where X(s) is the horizontal deviation of the particle from the closed orbit. Here s is 

the longitudinal particle coordinate, which advances from 0 to C, the circumference, 

as the particle completes one revolution of the accelerator. 

?articles execute ‘betatron’ oscillations about the closed orbit ,.r;+h ‘;,a=- f . . .“- -..-- _ .oc~2sing 

due to quadrupole fields of strength K(s) given by 

K(s) = 2 P.2) 

The product Bp is called the magnetic rigidity of the particle and it is proportional 

to the partide’s momentum, 

Bp= f, (1.3) 

e being the charge of the electron and p the radius of curvature. (Bp) can be calculated 

from 

Bp = &jPW. Tesia - meters. (1.4) 

The quadrupole strength K(s) alternates sign in an alternating-gradient accelerator 

such as the Tevatron. The number of betatron oscillations in one turn is called the 

tune, V: about 19.4 for the Tevatron. (Occasionally the symbol Q will also be used 

to denote the tune.) 

The nonlinear term on the right hand side of (1.1) is due to sextupole fields of 

strength E(S). It can sometimes be treated perturbatively. Both K(s) and E(S) are 

periodic functions of s with period C. 

The concept of phase space is closely related, both theoretically and experimen- 

tally, to the analysis of these oscillations. The coordinate X and the slope P z dX/ds 



5 

form the phase space. An observer, stationed at a fixed point in the accelerator ob- 

serving the horizontal motion of a particle can plot the phase space point X,, PC for 

successive turns t, to obtain a Poincare plot. After a simple transformation, these 

points are given by 

X, = Atcos@t (1.5) 

and 

Pt = -At sin at, (135) 

where A:/2, at = 2nvt are the ‘action-angle’ variables. When the amplitude At is 

sufficiently small, it does not deviate from its average value A, and the phase space 

point moves on a circle on the X, P plot. When nonlinearities become important, the 

phase space point falls on a smooth, yet distorted, curve. From here on, the terms 

phase space plot and Poincare plot will be used interchangeably. 

The expected phase space structure can be calculated by numerical tracking of 

particles. This is illustrated in Fig. 1.1 where particles of various amplitudes have been 

tracked through an accurate representation of the Tevatron. Most of the features have 

been demonstrated and measured during E778. In order to link the various features 

of the phase space to the specific experiments the E778 collaboration performed, the 

qualitative phase space behavior at various amplitudes is considered next. 

At sufficiently small amplitudes the motion is still linear to a good approximation 

and the one-degree-of-freedom trajectories are circles. At larger amplitudes deviation 

from circularity due to the nonlinearities becomes apparent. To quantify the magni- 

tude of the distortion a parameter called ‘smear’ is defined as the root mean square 

(rms) deviation from a circle. In experiment E778 the smear was measured for a 

variety of accelerator conditions and compared with both numerical and analytical 

calculations. These measurements constitute the Smear Experiment. Along with the 

corresponding theoretical predictions, they form the subject of the Chapter IV. 

The correlation between the smear and such accelerator performance measures as 
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injection efficiency and particle lifetime was also studied. This second experiment is 

the Injection Experiment and it is described in Chapter V. 

At intermediate amplitudes, one finds a very interesting feature of the nonlinear 

motion, namely the five-beaded necklace, conventionally called the n=5 resonance 

island chain. Fundamental quantities associated with this structure are calculated 

and compared with experimental results. This experiment will be referred to as the 

Resonance Island Experiment and it is analyzed in Chapter VI. 

Finally, at large amplitudes the regularity is lost and the motion becomes chaotic. 

The largest regular contour is sometimes called the ‘dynamic aperture’ of the accel- 

erator. It decreases with the increase of the magnitude of nonlinearities. In E778 the 

dynamic aperture was measured for various conditions. These results are compared 

with the prediction from short-term tracking calculations. These measurements com- 

prise the Dynamic Aperture Experiment, the analysis of which is given in Chapter 

VII. 

Chapter II is devoted to a theoretical discussion of the concepts investigated ex- 

perimentally in E778, while Chapter III contains general remarks on the experimental 

aspect of this study. Most of the lengthy and tedious derivations have been put in the 

Appendices. Thus, the general reader need not be distracted with their mathematical 

details. 

Before the end of this introduction, two more remarks are in order. First, nonlin- 

earities were introduced into the Tevatron in the form of already installed sextupole 

magnets. Second, the study described in this thesis is a purely one-degree-of-freedom 

one: horizontal. Already existing plans for continuation of this experiment include 

studies in both transverse planes. 



CHAPTER II 

SINGLE PARTICLE DYNAMICS IN THE PRESENCE 

OF A SEXTUPOLE FIELD 

Hamiltonian concepts are important in analysing phase space motion. The Hamil- 

tonian leading to (1.1) is 

mx, p; 3) = ; [P’ + K(8)X’] + +x3. (2.1) 

In the case of E778 where the nonlinearities were introduced in the form of sextupole 

magnets, -z(s) is the normal sextupole strength 

E(J) = B:‘. 
2(BP) 

(2.2) 

A canonical transformation is performed next to ‘normalized’ coordinates I, p, in 

terms of which the linear part of the motion is reduced to a simple harmonic oscillator. 

This is called a Floquet transformation. The new coordinates and momenta are given 

in terms of the old ones through the relations 

and 

(2.4) 

Here p is the horizontal beta function at the point z. Also known as the ‘Courant- 

Snyder amplitude function’, the beta function is usually a periodic function of 8 and 

8 
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its square root is proportional to the amplitude of the betatron oscillation. The beta 

function at a reference point is denoted by PO above. The parameter a is defined by 

where prime denotes differentiation with respect to 8. Together with p and a third 

parameter 7 defined by 

1+ f9 
YE -1 

P 
(2.6) 

they form the so called lattice parameters. They are also referred to as Courant- 

Snyder parameters collectively. 

The new Hamiltonian becomes 

(2.7) 

where the independent variable B has been changed to the more convenient B = s/R, 

R being the average radius of the storage ring. 

So the Hamiltonian now is that of a simple harmonic oscillator with the addition 

of a small nonlinear term due to sextupoles. It is well known that action-angle 

coordinates are very useful for studying this problem. Hence the action-angle variables 

I, a are defined here by 

I = Jzrp,cos [4(e) - ve + a] (23) 

and 

Pop = -@sin [tit(e) - d + a], (2.9) 

where 

(2.10) 

and it is denoted by z’ below. The betatron tune is denoted by Y and +(e) defined 

(2.11) 
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is the Floquet phase at the location 8, or the betatron phase at 8. The amplitude of 

the motion will be denoted by A and is defined by 

A = ,/ZIP, (2.12) 

and the phase 4 is defined by 

4 = +(e) - ve + a. (2.13) 

Then Eqs (2.8) and (2.9) take the form 

z = Acosd (2.14) 

and 

c’ = -Asin 4. 

The new Hamiltonian, in terms of action-angle variables, reads 

(2.15) 

(21po)3/2 ~02 (7~ - ve + a). (2.16) 

The final goal is to come up with a set of coordinates in terms of which the 

Hamiltonian assumes the form 

H(a, I) = vlI + vJz + vJ3 + , (2.17) 

that is, H is a function of the action only, independent of angle. This can be accom- 

plished via a series of canonical transformations [S]. The purpose of each of these 

transformations is to defer the angular dependence to higher order. As expected the 

coefficients y, vz, vs, are of order 0, 2, 4, in the small perturbation parameter 

which is proportional to the sextupole strength. 

It is demonstrated in this chapter that applying these transformations to first 

order results in the distortions of the beam shapes, which are relevant to the smear 

experiment. Eventually these form&e will be used to derive expressions for the smear 

which will be compared with experimental and tracking calculations. 
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Furthermore, it is shown that a second order Moser transformation leads to the 

expressions for the variation of tune with amplitude (the term ‘amplitude-dependent 

tuneshift’ will also be used) due to nonlinearities. Comparison with experimental and 

simulated results will also be given. 

A third order Moser transformation of the Hamiltonian (2.16) will be demon- 

strated next. This derivation will lead to an expression which describes a system 

under the action of a nonlinear resonance. It serves as the theoretical model for the 

description of the nonlinear resonance island region of the phase space.. Expressions 

of the ‘island width’ and the ‘island tune’ (to be defined below) will be derived and 

compared with single particle tracking results. 

It should be noted that several theoretical models [14,15,16,17,18] exist to describe 

the resonance island part of the phase space. The Moser transformation approach 

was chosen because it is a traditional and rather pedagogical one. 

Finally at large amplitudes, near the boundary of stability, the phase space topol- 

ogy can be described reasonably accurately by a model which assumes only the exis- 

tence of the third integer resonance. The details of this description will be given in 

the last section of this chapter. 

In reality large amplitudes exhibit chaotic behavior. This is illustrated in Fig. 1.1 

by the dots outside the dynamic aperture. Understanding of the chaotic region though 

is beyond the scope of this thesis. 

Beam Shape Distortions - Distortion Functions 

Following tradition [15,16,17], the canonical Hamiltonian formalism is used to 

derive the lowest order beam shape distortions due to sextupoles in the horizontal 

plane. The final form& are expressed in terms of ‘distortion functions’, a term 

introduced by Collins [20]:The idea of distortion functions is the following. As shown 

above, a judicious transformation of the variables forced the form&e describing the 
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linear part of a betatron motion to be identical to that for simple harmonic motion. 

The idea of distortion functions is to account approximately for extra perturbing 

effects by allowing the amplitude A and the phase I$ of (2.14) and (2.15), to be 

‘distorted’ by the addition of small s-independent terms 6A and 64. To first order in 

the strength of the nonlinear perturbation (the sextupole strength here), the motion 

is described by 

z - (A + bd) cos (4 + 64). (2.18) 

In the accelerator physics context distortion functions have been derived indepen- 

dently by various authors [20,9,10,15,22,6]. 

Only an outline of the derivations of beam shape distortions will be presented 

here. More detailed discussion can be found in references [21,22,23]. 

In Eq. (2.16), note that the expression 

RB:’ P “’ ,i(+ - ve) 
6(BP) z 0 

(2.19) 

is a periodic function of 0, hence it can be expanded into harmonics, to get 

&(%I) = VI + (21)3’2&‘2 c[3Al,,, sin (a - me) + Aa,,, sin (3a -me)], (2.20) 
m 

where 

i Al, = - C ,kei(ti - Ve + d)k 

24~ k 

and 

i As,,, = - c dkei(3?b - be + d)k, 

24~ k 

The summation above is over all the sextupoles in the ring, which are assumed to 

have infinitesimal length !a and strengths 

In principle one could now solve the equations of motion obtained from the Hamil- 

tonian Ifs to first order and calculate the beam shape. However, I am going to 
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proceed by making a Moser transformation from (a,l) to (b, J) so that the J’s be- 

come constants of the motion up to first order in sk. The generating function of this 

transformation is 

G3(% J; 0) = aJ - (2.pi3,?z~ (& CO6 Plm + mAt;, CO6 q3,,,) , (2.24) 

where qr,,, = a - me and qsrn = 3a - mb’. By definition, the new Hamiltonian is 

Ii, = vJ + A&/scxt, (2.25) 

where AZf&t does not contain any eeroth or first order terms in 8s. The first order 

changes in I and a are given by 

and 

Explicitly they are 

&m-b=,+ 

(2.26) 

(2.27) 

and 

61~ (21)3’2P,“a C (s sin ql,,, + 22; sin q3,,,) (2.28) 
m 

6a = 3(2IP@ C (& cos qllm + mt;, cos q3m) 
m 

(2.29) 

These are *elated to the changes in amplitudes and phases through the relations 

(2.30) 

and 

64 = 6a. (2.31) 

Before the calculation of the changes in the amplitude and phase, notice that 

when Y or 3v equals an integer, in Eqs (2.28) and (2.29) the solutions diverge. These 

are in fact the first-order resonances for the sextupoles. When the tune is close to 



14 

a particular resonance, then the resonance term dominates in the sum and one can 

safely disregard the rest of the terms. This is the way to handle the situation near a 

resonance. I shall return to this point soon. 

For the time being, a situation far away from resonances is assumed and the 

summations over m in (2.29) and (2.29) are performed. Using the formula 

5 = 
m&=--m m--v 

-?r(cot nv)e ib e=o 

one arrives at 

,i(me + b) 

I 

-k,i[b+ 4e - ~11 o < e < 2T 

(2.32) 

and 

6d = dr[(Ar sin 4 - BI cos 4) + (Aa sin 34 - Bs cos 3++)] (2.33) 

64 = d[3( Al ~0s 4 + BI sin 4) + (Ag cos 34 + & sin 34)], (2.34) 

where Al, B,, Aa and Bs are the Collins’ distortion functions defined by 

-G(4) = B:(4) 0 <I$k-$I< 2TV (2.35) 

&(3$) = 2sid3av~~C0s3(I~k-~/-*Y) ‘Il~k-11I~‘nv 

A3(3+) = %(3$) 0 <I?bk - $I< 2TY. 

The prime denotes differentiation with respect to the argument. The distortion func- 

tions defined above are lattice functions due to the presence of sextupoles, much the 

same way p and rr are lattice functions due to the presence of normal quadrupoles. 

They are periodic functions of the ring. Notice that at a sextupole of strength Sk, Al 

jumps by 8k/4 while Br remains continuous but exhibits a cusp. Another property 
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of the distortion functions is the following. If B, A are the distortion functions at 

location 4, then the distortion functions at location 4’ = $J + a are given by 

B’= ’ 
2 sin 7rv cos(J)+a-~k-kY) 

and 

A’ = - 2si~nvsin(rl+n--k-nv), (2.37) 

where it is assumed for simplicity that there is only one sextupole at location $k, 

with 4s < $,$‘. From here one concludes that 

B’ 
0 = 

A’ 
(2.38) 

which implies a rotation of the vz :ctor (B, A) by an angle o. 

Finally, taking into account an average dipole effect that sextupoles have on a 

charged particle which leads to a distortion of the ideal closed orbit, one obtains 

and 

6d = d* [ -( Al sin 4 - B1 cos 4) + (Aa sin 34 - Bs cos 34)] (2.39) 

64 = A[( Al cos 4 + B1 sin 4) + (A3 cos 34 + 83 sin 34)]. 

The distorted beam shape in the horizontal phase space are given by 

(2.40) 

c=bz+(d+bd)cos(4+6#) (2.41) 

and 

where 

and 

2’ = 6~’ - (A + 6d) sin (4 + 64), (2.42) 

62 = -2d=& (2.43) 

62’ = -2dsAr. (2.44) 
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Second Order Tuneshifts 

Nonlinearities cause variation of the frequency with amplitude. The first order 

perturbation does not produce any such tuneshifts. The reason is that the first order 

term in the perturbation Hamiltonian is of the form z3. Since cos’ I#I averages to zero, 

there is no resultant shift in the tune to first order and hence one must seek higher 

approximations. The lowest contribution to the tuneshift comes from the second 

order. 

From the generating function Gs of Eq. (2.24), 

(‘Wa = (2JY”’ + 9(2J)‘P,“’ g (& sin ql,,, + mAt;, sin q3,) . (2.45) 

The second order terms in the Hamiltonian is 

A& I-t= c( 3-4~ sin ql,,,l + AW sin q3,,,,) x 
m’ 

xW2J)’ F (& sin qlm + mA:Jv sin q3,,,) 

Since the betatron tunes are defined per revolution, one must average over 0 to obtain 

W La= +(2J)‘~ 
m 

2 + mA+y) . (2.47) 

Summation over the harmonics leads to the following result 

c -4% - 
mm--Y -& ?B@)k (2.48) 

and 

c Ai” = -&T(&s)k. 
m m-3v 

(2.49) 

Here Br and B3 are the distortion functions previously defined by (2.35). Recalling 

that the tuneshift is given by 

(2.50) 
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the second order tuneshift due to sextupoles is 

Av = -$A2 x(3Bls + B3~)k. 
k 

There are two remarks to be made on this expression. First the parabolic depen- 

dence of tune on the amplitude is characteristic to sextupole-induced nonlinearities. 

Second the effect of nonlinearity is to make the tune change with increasing ampli- 

tude. It is demonstrated later that this behavior is followed by experimental data. 

Finally these two properties of the tuneshift are first responsible for the phenomenon 

of the ‘decoherence’ of the beam (to be described later) and second, they lead to the 

formation of the nonlinear resonance islands, a concept I am introducing next. 

One Dimensional Nonlinear Resonance 

Sextupole-Generated 2/5 Resonance Islands 

In this section attempt is made to understand intuitively the origin of the n=5 

resonance island chain. Furthermore, a mathematical derivation is presented demon- 

strating how a Hamiltonian describing the motion of a particle in the presence of a 

sextupole field can lead to a new Hamiltonian representing motion along the contours 

of the 5 resonance islands. 

The concept of resonance enters as follows. Suppose that the base tune (the 

tune with the nonlinearities set equal to zero) is just above l/5. (Since the number 

of complete cycles, and hence the integer part of the tune, are undetectable, the 

‘fractional tune’ will often replace the tune.) After 5 turns around the accelerator a 

particle will return close to where it started. It was shown above that the effect of 

the nonlinearity is to make the tune change with increasing amplitude, so there is 

one amplitude, AR, for which the tune is exactly l/5 and the repetition is perfect. 
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Furthermore there is a frequency entrainment effect causing all nearby amplitudes to 

“lock-on” to exactly the same tune of l/5. This accounts for the islands, illustrated 

in Fig. 1.1. The centers of these islands are called stable fixed points since a particle 

starting near one stays near forever. The topology of the structure also requires 5 

unstable fixed points between the islands. The maximum separation (in amplitude) 

of the curves forming the boundary of the island is sometimes called the island width. 

The particle moves steadily along a regular oval curve, circulating around the iixed 

point in much the same way that a small amplitude particle circulates around the 

origin. An island tune Q, is defined as the average number of revolutions around the 

island per turn around the accelerator. In reality the particle jumps from the regular 

curve of one island to the corresponding regular curve on the next island, returning 

to a somewhat displaced position on its original curve after 5 turns. Tunes near 2/5 

or 3/5 or 4/5 lead to much the same story. For example, with the tune near 2/5, the 

case investigated experimentally in E’778, the particle jumps 2 islands at a time but 

still returns to its original island after 5 turns. 

The next goal is to derive a Hamiltonian representing motion at a tune 2/5, or 

actually 97/5, if the integer part of the Tewtron tune (19) is included. The equation 

of motion of a particle of tune 97/5 is expected (from Eq. (2.8)) to contain a term of 

the form cos [$ - yd + a], or, cos (5a - 978 $ #cl, or cos [5a + . . .I, where 4s is some 

constant phase. From the Hamiltonian (2.16), such a term can only appear in third 

order in the sextupole strength [25]: indeed first order terms are of the form 

cos3 a - cos a + CO6 3a, 

second order terms come from cos3 a x cos3 a and are of the form 

cos 4a $ co* 2a + constant 

and only third order terms can be of the form 

(2.52) 

(2.53) 

(2.54) 
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I shall follow ups this argument and proceed by constructing a Hamiltonian which 

is exact up to third order. However, the reader should be aware that the idea of 

the term cos [5a + . . .] appearing in third order in perturbation is not commonly ac- 

cepted. The interesting notion of interference of resonances, introduced by Michelotti 

[26,27], suggests that the 2/5 resonance is due to an interference between the l/3 res- 

onance appearing at first order in the perturbation expansion, and the l/2 resonance, 

which appears at second order. Plans exist for further investigation of this idea by 

comparison with experimental and tracking data. 

The generating function G’s of Eq. (2.24) was constructed so as the Hamiltonian 

Ha be exact up to second order in s*. Hence one more transformation is needed that 

will give rise to a Hamiltonian H,, which is exact up to third order. 

The generating function Gs from Eq. (2.24), 

G3(a, Jt @) = aJ - (W3’%‘3 g (2 cos *I,,, + mA;;, cos q3m) (2.55) 

implies 

(2.56) 

(2.57) 

and 

Ha(b) J) = H-,(b, J) + s. 

Explicitly, 

I = J + (2J)3/‘&‘aQ(a), (2.59) 

where 

Q(a) = g [s sin am(a) + ,““3iv sin q3,,,(a)] 

(2.58) 

(2.60) 

and qim(o) = io - me+ ai, with i=1,3. From here one can calculate the term (21)3/3 

by expanding (2.59) in powers of J 

(21)3’s = (25)3’z + 3(2J)‘p”‘Q(a) + ;(2J)“13p,Q’(a) + . . . . (2.61) 
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The new angle variable b can be calculated from Eq. (2.57) 

b = a - 3(2.7)1+‘,‘/*~,(a) (2.62) 

Qda) = F [S CO8 am(a) + mA;;” cos q3m(a)] . (2.63) 

The next step is to solve Eq. (2.62) for a. This can be done recursively. To a first 

approximation a is set equal to b in Q1 and hence a is given by 

a = b + 3(2J)‘~z~,“*Q1(b). (2.64) 

Hence the new Hamiltonian (2.58) becomes 

Ha(b, J) = vJ+ 

3(2J)zpo I$ (2 sin qh + z:,j: *in qam) x 

?(3A1,1 sin ql,,,l + As,,,, sin q3,,,,) 

+~(2JYP22 5 (2 sin qh + zA3r;: sin qam) x 

z (* sin qld + ~,~~v sin q3,,) x 

g’ 
3A1,. *in qlrntt + AZ,,,” sin qamt,). 

Notice that in the above expression 

sin qim = sin (ia - m6 + aim) i = 1,3. 

With the use of Eq. (2.64), Eq. (2.66) becomes - for i=l, 

sin qlm = sin [(b - mb’ + al,,,) - 3(2J)‘~‘~~“Ql(b)] 

= sin (b - m8 + al,) cos [3(2J)‘~‘~~“Ql(b)] 

- cos (b - mt? + al,) sin [3(2.T)1/a&“Ql(b)]. 

(2.65) 

(2.66) 

(2.67) 
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Then using the first equality of Eq. (2.67) 

Ha(b, J) = vJ+ 

+3(24% F (2 sin h,,(b) + 3(2J)‘/zp~‘“Ql(b)] 

+ i2,jv ai= [qam(b) + 9(2J)1~zp~izQ,(b)]} x 

CI3Aw sin hmO) + 3(2J)“‘po”‘Ql(b)] 

~~3,~ sin [qa,+(b) + 9(2J)*“p~“Ql(b)]} 

+~(~~)“‘rL%‘2~ (&sin [q,,(b) + 3(2J)‘I’@Ql(b)] 

+ ,“2yv *in [qam(b) + 9(2J)1~zp~‘zQl(b)]} x 

gy?” ---L sin [qdb) + 3(2J)1’zp~‘aQl(b)] 

+ ,,f,AiJi *in [a.,&) + 9(2J)11Sp~“Q1(b)]} x 

~{3Aw sin [ql,+g(b) + 3(2J)1/zp~/1Q1(b)] 
m” 

SAW sin [q3,+ + 9(2J)“‘&‘Ql(b)]}, (2.68) 

where 

q;,(b) = ib - me + a;,,, i = 1,3. (2.69) 

If only the first order terms in the sextupole strength, which enters in Q,(b), are 

kept and use of the second of the equalities of (2.67) is made, one arrives at 

sin qlm N sin (b - m0 + al,) - 3(2J)*lz/#‘Ql(b). (2.70) 

The same expansion is valid for sin qam. Taking this into consideration, Ha becomes 

Ha(b, J) = vJ+ 

9(2J)‘po F (& *in n,,,(b) + &3(2J)1+‘;‘aQl(b) cos PI,,,(b) 

+ mAT3y sin w.(b) + mA~~v9(2J)1’3~~‘2Q1(b) cosqa,n(b)} x 

CWLl *i=qdb) + 3A1,,3(2J)‘~‘~~“Q1(b) cos ql,,(b) 
m’ 
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+-4w *i=‘m(b) + Aam~9(2J)“z&“Q1(b) cos q3,,,(b)} 

+q(2J)6’zfl~‘p~ (2 *inqdb) + ,“t2V sinqam(b)} x 

mfri, sin qa,+(b)} x 

3A1,0 sinql,.(b) + Ahtt sin q%“(b)} (2.71) 

In the above, alI terms contributing to powers of J higher than 5/2 have been ignored, 

because only contributions to 5th order resonance (- I’/‘) are of interest. 

Grouping the terms of equal powers of J together, one gets 

H,(b, J) = vJ+ 

g(2J)‘Po C, { 32:Aim’ sin qllm sin qlm, + Az_A3ym’ sin qlm *in qam, 

+ 
~As,A;~: 

m-3v 
sin qarn sin qlm, + 

&A,,,~ 
m-3v 

sin qaml sin qam 
1 

+9(2J)s/3p3” 0 

+ (~Y~~~i,~~v, Co* qad* CO3 qlm8 sin qlm 

+ f~Y$$~~; sin nm cos qaml cos qlmll 

+ (~J$$~~v, Co8 q3d~ co6 qam, sin qlm 

+ f~~~~$A~~; co6 qlrn81 sin qlmO co6 qlm 

+ (~~$$A~~v, co8 qh sin qlm8 co* qamtl 

+ (~:mv~~~;) co8 qh sin qht co6 qlmll 

+ (~;;;::-v) co8 qlm sin qaml co6 qamlt 

+ (~f$;~f~~, sin qam co6 qlrn, co6 qlmll 

+ (m _ 3v)(m,, _ 3v) *in qarn ~0s ad cc.6 93mll 
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+ (m - 3v)(m” - 3Y) 
sin qsm cos qamO cos ~3~8, 

+(m - 3v)(m” - v) 
co6 q3m sin qlrn, cos qlrnu 

+ (m _ 3v)(m,, _ 3y) cm am sin ad 03s q3d 

27A~A3miA1,,p 
+(* - 3v)(m” - v) 

co6 4% sin qarnt cos qhp 

9As,,,AwAwt 
+ (m - 3v)(m” - 3v) 

co6 qsrntt sin qsrn, cos qh 

+9(2J)“ly33/2 
2 0 m,zm,, { ~~$~f~m~l sin qlm sin qlmo sin qhp 

3-bAm~Aarn~~ 

+ ‘;i yy VI 
sin qlrn sin qlmt sin q3d8 

+ (m _Imy)(?~, ::L) sin qlm sin q3d sin qhdt 

3AlmAsm~A3m~~ 
+ (m - v)(m’ - 34 

sin qlm sin qsmt sin qh8, 

9&Jw&m~~ 
+ (m _ 3Y)(m, _ “I sin am sin qld sin qw 

3-43mA,,~A3,. 
+ (m - 3v)(m’ - v) 

sin qam sin qlm, sin q3d, 

QA~m&rnAn~~ 
+(m - 3v)(m’ - 3v) 

sin qam sin q3d sin qhu 

+ (m - 3v)(m’ - 34 
sin qSm sin qarng sin q3d 

> 
. 

With the use of the trigonometric identity 

sin Asin B = $cos (A+ B) - co8 (A - B)], 

the terms which are proportional to J’ in (2.72) are rewritten, to give 

(2.72) 

(2.73) 

&(b, J) = d-t- 

$2J)‘PO c (“2--“:-’ CO8 [-(m -my + (cr,, - ald)l- 
3&Am~ 

co6 QI 
m--v m,m’ 

&m&m~ -Q2- &m&m~ 3Asm-h~ cosQs+ m-31, cosQ4- 3A.a,.,-41,~ 
+ 

m--Y m--Y m - 3v 
~0s Qs 

&n&n~ m _ 3v cos [-(ml - mp + (c%l’ - an)1 - &m-~&no 
+ 

m - 3v 
~0s Qs 

I 
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+w)6’aP,3’a c {. . .} + ;(2J)‘9?03/~ c {. . .}. 
m,m’,m” m,ln’,?n” 

(2.74) 

The terms proportional to Js/’ remain the same as in Eq. (2.72). The quantities Q1 

to Qs arc defined as follows 

Q1 = 2b- (m + my + (aim + a!lm,), (2.75) 

Qa = 2b - (ml- m)B + (a3,t - al,,,), (2.76) 

Q3 = 46 - (m + my + calm + a3m,), (2.77) 

Q4 = 2b - (m - m')e + (aQm - a,,,), (2.78) 

QS = 4b - (m + my + (u3, + al,,), (2.79) 

and 

Q6 = 6b - Cm + 40 + (aa,, + 03,,,,). (2.80) 

The last Moser transformation is performed now, from (b, J) to (a,l) such that 

the new Hamiltonian is exact up to 3rd order in the sextupole strength. To avoid 

proliferation of the notation the new variables are called (a, I) again. The generating 

function for this transformation is given by 

G,(b,I; 6’) = bI+ 

3Am4,~ 
:(21)apom~, (-(m - v)[(m + mt) - 2vl sin Q1 

+ (m - $;i?:, - 2yl sin Qz - (m - ,)-$$;, - 4vl sin Q3 

+ (m - 3v~;;?:tj - 2vl sinQ4 - (m - 3:l-$;$;tl - 4vl sin Q5 

-(m _A3:7;7: m) sin -(ml - m)e + (~3~’ - asm)] 
1 



25 

From the above generating function the old action J is given by 

J25. (2.82) 

Since only terms of order J”l’ are of interest, the following approximations are true 

and 

(2J)’ N (21)2, (2.83) 

(2J)&” N (2I)+ (2.84) 

The new Hamiltonian is given by 

a N b. (2.85) 

B,(a,I) = &(a,I) + g? (2.86) 

If one keeps only the terms which give rise to terms of the form sin (5a + . . .), because 

those are the ones contributing to the 5th order resonance, and if one writes explicitly 

the expressions for the q;,,,‘s, i=1,3 and collects all the similar terms together, one 

arrives at 

(2.87) 

where 

s1 = m,gm,, (mA:$;2;“) Sin Pa - cm + m’ + m”)e + (al, + al,, + a3m,,)]r 

s3 = &, (mA:$gr;“) sin [5a - (m + m” - m)e + (CM + a3m,, - al,)lr 

and 

s4 = IIm,, (mA_s~~~${~‘~vl sin Pa - (m - m’ + 40 + (CQ, + a3mg, - crl,s)l. 
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The next step is to perform the summations over the harmonics. First, the coef- 

ficient of the term which is quadratic in the action I, 

A:.” 
m - 3V I 

can be expressed [21] as 

c = -g ?3B1s + B3S)k, 

(2.88) 

where B1 and B3 are the distortion functions previously defined in (2.35). 

In fact, it can be easily shown [21] that this coefficient c is simply related to the 

amplitude-dependent tuneshift due to the sextupoles. Indeed the tuneshift due to 

sextupoles is given by 

Av = 21~. (2.90) 

Hence 6’ is the detuning term due to sextupoles. 

Next I am going to calculate the triple sums of Sl, 4, Ss and S,, and express the 

S;‘s in a closed form. The way to calculate S1 is demonstrated and the results for the 

other three sums are given. First Sl is written as 

-knAlrn~A~rn~~ 

m,m#,m” (m - v)(m” - 3Y) 
,45a - (m+m'+m")B + (al, + al,! + a3mtv)] 

0* 

(-4 l~eia1m)(Al~~~iul~‘)(Asmll,iasm11),i~5a _ (m + m, + m,,)el 
(m - v)(m” - 3v) 

The expressions 

&.ehn i=l,3 

are given in Eqs (2.21) and (2.22). From the above sum, only the slowly varying terms 

will be kept, that is, terms of the form e i(5a - 978) , since the tune of the machine is 

close to 19.40. 

Hence the above triple sum - over m, m’ and m” - is actually constrained by the 

condition 

m+m’+m”=97. (2.91) 
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Then S1 becomes 

(Al,eio~~)(Al,~eia~~J)(Asm~~eias”1)e~(5a _ 979) 

-d,m”,+,‘fmu=~, (m - v)(mO - 3~) 

In the following m’ is substituted for (97 - m - m”), so S1 becomes 

Substituting Eqs (2.21) and (2.22) above leads to 

sk13kask3ei(?b - I& + 97@)kZ,i(5a - 970) x 

,@kl - Vekl + m(okl - ok,)] #?bk3 - 3V@k3 + m”(ok3 - @k3)] 

m--Y d - 3v 

The two sums over m and m’ above can be calculated using formula (2.32). The 

result is 

{ 
,i(5a - 978) 

” =Im -(24~3asinsvsin3xvX 

where 

or 

c SklS,&&[(~kl + ‘bkl + 3+k3) - 568,, - 4Xv] 
, 

kl,kl,k3 

” = - (2:3* sin ?TY iin 37rv ’ kl~,k3dk18kzSk3x 

cos [c5a - 978) + ($kl + $k1 + wk3) - 56ok3 - 44. 

Similarly 

‘OS [(5a - g7e) + ($kl + +k3 + 3&Z) - 568k2 - 27W], 

(2.92) 

(2.93) 

(2.94) 

(2.95) 
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” = (24;‘n sin ?yy iin 37rv ’ klgk3 dk1skzsk3 x 

‘OS lcsa - g7e) + (wk1 - $‘L1 + 34k3) - 56ek, - &4, 

” = (2i)3* (sink)2 x kl~k3dk1dk2sk3x 

cos [(sa - 978) + (wkl - +kZ + 34k3) - 56ek2 - 64. 

So the Hamiltonian now has the following form 

&(a, I) = VI - $$ c(3&s + &8)k 
k 

+~(2~)6’3b$“& kl~k36k1.‘k38k3 
I 

-117 
CO6 [(5a - 978) $611 

sinav sin 3nv 

69 cos [(50 - 978) + Q,] ‘+ 51cos [(sa - 978) + 6,] -- 
2 (sin TV)* sin *V sin 37~ 

27 CO6 [(5a - 978) + 64 
-- 

2 (sin 3nv)l ’ 

In short the above expression can be written as 

B,(a,I) = VI + CP + P[E~ cos (5a - 978) + Ed sin (5~ - 97e)], 

where 

PO 
e = -G ~(3B1.3 + &d)k, 

k 

and 

69 0~62 
-117sinrrey;;3*” - - 2 (sinnv)l 

+51 
cos 63 

sin XV sin 3av 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

‘1 = -;2’f’8,512& k1&k3.kI~k1~k3x 
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-117 sin 61 69 sin62 -- 

sin TV sin 3*v 2 (sinxv)l 

$51 
sin 6, -- 

sin 7rv sin 3rv 

The various angles are defined as follows 

61 = (fokl + #k3 + wk3) - 56ek2 - 4av, (2.103) 

62 = (titkl + $k3 + 3$k,) - 56ek2 - zR,,, 

63 = b/k3 - $61 + 3gk3) - 56ekz - 2?rV, 

64 = (34kl - $kz + 37jk3) - 56ek2 - gxV. 

(2.102) 

(2.104) 

(2.105) 

(2.106) 

The above Hamiltonian can be written as 

B,(~, I) = vz + JZ + d+ c0s ~(5~ - 978) + doi (2.107) 

with 

e,=&T2 (2.108) 

and 

do = arctan (-:) . (2.109) 

Hence, starting from the sextupole Hamiltonian, a new form has been derived 

which describes a system under the action of the resonance 97/5. Eventually (in 

Chapter VI) these expressions will be used to derive the island tune and the island 

width. 

It is already clear that the above model of the isolatednonlinear resonance, namely 

the model which assumes a particle moving under the action of a single resonance, 

is incomplete when used to describe the situation of the resonance island experiment 

of E778. One can see from Fig. 1.1 that the phase space is heavily influenced by 

the presence of the third integer resonance (to be discussed next). As a result of 

this, the five islands are distributed along a triangular contour, characteristic of the 
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third integer resonance. However, the above calculation is still useful in a twofold 

way. First, it provides an insight of how sextupoles give rise to 2/5 resonance islands. 

Second, it demonstrates the degree of accuracy of the model. 

The Third Integer Resonance 

In the same way as before, when the tune is very close to a third integer, 

“++6, (2.110) 

the Hamiltonian H3 

& = VI + (21)3’aP,“z x[3Al, sin (a - me) + A3,,, sin (3~ - d)] (2.111) 

is dominated by the term 

Aa. sin (3~ - 588). (2.112) 

Hence the Hamiltonian describing motion near a sextupole-induced third integer res- 

onance is 

HT = VI + (2Z)3”#1A3,~s sin (3a - 588). (2.113) 

Transformation to the rotating system in phase space, yields the new invariant Hamil- 

tonian 

Eli = 611 + (211)~“/#‘A3,ss sin (3~) = COnstmt, 

where 6 is defined by Eq. (2.110). 

(2.114) 

For 6 nonzero the motion in phase space is shown in Fig. 2.1. The curves shown 

correspond to four different values of the invariant HT. At small amplitudes the 

circles are distorted and are described well by the first order perturbation theory as 

shown earlier in this Chapter. 

For larger amplitudes the curves approach a triangular shape with three unstable 

fixed points at the points of the triangle. The fixed points of the motion can be found 



by solving the equations 

which lead to 

and 
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aHT o affT o 

al,=’ -= aal 

a1 = z 
3* 5K 

3’ 
al=---, 

3 
al=-, 

3 

(2.115) 

(2.116) 

(2.117) 

Here 11~ is the action from the origin to the fixed points. Finally, at sufficiently large 

amplitude the motion is unbounded. 
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Figure 2.1: Schematic representation of the phase space structure of 
the third integer resonance. 



CHAPTER III 

GENERAL REMARKS ON THE EXPERIMENTS 

For the experimental study of the Hamiltonian system described above the Teva- 

tron was chosen. The Tevatron, the world’s first superconducting proton synchrotron, 

is approximately circular with a four-mile circumference which is mostly occupied by 

dipole and quadrupole magnets. The ring is divided into six equally spaced intervals, 

called sectors. 

There are two reasons for choosing the Tevatron for E778. First it is a proton 

accelerator with excellent linear behavior as was reaffirmed as part of this experiment. 

(The linearity of the Tevatron was first demonstrated in 1983.) Second, a substantial 

number of sextupole magnets were already installed in the Tevatron and could be 

used as sources of nonlinearity. The position of the sextupoles (given below), the 

kicker magnet (E17), the beam position monitors used in the first run (E24 and E26) 

and the beam position monitors used in the second run (F42 and F44), are shown 

in a layout of the Tevatron in Fig. 3.1. Also the 6 sectors are clearly marked. The 

function of each of the above devices will be explained shortly. 

Scxtupoles Used in E778 

Some initial studies of the perturbation of the motion by nonlinearities were made 

in the Tevatron [28] in 1985. Then, eight superconducting sextupoles were used to 

33 
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excite the resonance at the betatron oscillation tune of 19 l/3. For E778, sixteen 

additional sextupoles were commissioned. Together with the eight previously used 

magnets, the total number of sextupoles is sixteen normal ones at stations 22, 24, 26, 

28, 32, 34, 36, 38 in C and F sectors and eight skew sextupoles at stations 12, 14, 16, 

18, 23, 27, 37, 43 in D sector (see Fig. 3.1). The skew sextupoles were not used in 

the studies performed up to now. 

The normal sextupoles are powered in pairs by 8 supplies, so one can have a variety 

of configurations. For E778 it was elected to power them as shown in Fig. 3.2. This 

particular (+ - + - . ..) configuration produces a strong driving term for 3v, = 58 as 

one can see from the vector diagram of Fig. 3.3. Fig. 3.3 is a graphical representation 

of the contributing terms to the summations 

dkei(3$ - 3V8 + m8)k 
7 (3.1) 

where m = 58 for the Tevatron. The sum is over all sixteen sextupoles. Near the third 

integer resonance 3v - 58 x 0, so the above sum is given to a good approximation by 

5 .qkeit3’b)k. (3.2) 
k=l 

The phase advance between two adjacent E778 sextupoles is 68”. Fig. 3.3 illustrates 

the sixteen vectors representing the individual terms of (3.2) as well as their resultant. 

The integrated field of each sextupole is 

/ 
2 . & = 44.45 kG-inch at 1” and 50 amperes (3.3) 

or 
B’1.f 
y = 44.45 kG/in at 50 amperes. 

2 (3.4) 

By varying the current through the sextupoles one could adjust the magnitude of 

the nonlinearity. In most cases all sixteen sextupoles had the same strength. 
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Figure 3.3: Vector diagram showing a strong driving term for the 
resonance 34 = 58 due to the 16 E778 sextupoles. 72 
denotes the resultant of the 16 vectors s1 to ~~6, 
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Phase Space Measurements 

The original beam position monitor (BPM) system in the Tevatron was capable 

of recording the motion of the centroid of the beam for 1024 turns. (An upgrade for 

this experiment [29] extended the capability to the million turn level.) Fig. 3.4(a) and 

(c) are plots of turn-by-turn data from the Tevatron as recorded by two neighboring 

position monitors (E24 and E26) in the horizontal plane. The Tevatron injection 

kicker magnet, located at El7, has fired 50 turns after the beginning of the plot in- 

ducing a coherent betatron oscillation. The fact that the amplitude does not decrease 

significantly, is an indication of near linearity, as will be shown later. Fig. 3.4(b) and 

(d) display the Fourier transforms of the two position signals and give the fractional 

part of the betatron tune. These data were recorded during the 1985 studies. 

The positions at two neighboring monitors, together with a knowledge of the 

intervening optics assumed linear, can be used to generate an experimental phase 

space plot like the one shown on Fig. 3.5 [28]. This figure displays data similar to 

Fig. 3.4 in normalized phase space coordinates: the horizontal axis is displacement 

from the closed orbit, +, and the vertical axis is &c’+ az, where 2’ is the angle with 

respect to the unperturbed orbit, dz/d J, and p, a are the conventional Courant- 

Snyder parameters. In these coordinates the phase space plot is the familiar circle of 

the simple harmonic motion. In the presence of nonlinearities arranged in such a way 

as to excite the l/3 resonance the circle is deformed into the triangle characteristic of 

this resonance. Fig. 3.6 is the experimental verification of this case. It displays data 

taken during the above mentioned studies of 1985, where only 8 sextupoles were used 

and the small amplitude tune was very close to the third integer resonance (19.34). 

The same kicker as above (injection kicker) produced an initial amplitude so that a 

particle at the centroid would perform stable motion close to the separatrix. 
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(b) 

(4 

Figure 3.4: (a) and (c) are the output of two neighboring BPMs for 
1024 turns. The Fourier transforms are shown in (b) and 
(d); the fractional part of the tune is .34. 
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Preliminary Steps for the Experiments 

There were several steps preliminary to the measurements. First, all the exper- 

iments were carried out in the standard fixed-target optics lattice of the Tevatron. 

Two different cycle modes were employed: 

1. For the smear, a standard cyclic mode of operation was employed with the energy 

held constant at 150 GeV. 

2. The resonance island experiment was done under storage conditions in order to 

see long-time effects. 

After setting the appropriate cycle structure and basic optics proton beams of good 

quality were established: the transverse emittance was smaller than 15~ mm-mrad 

and the longitudinal emittance was equal to .3 eV-sec. The definition of emittance 

used throughout this work is the 95% normalized emittance and is given by 

6na’ 
e= -- 

P 
7, (3.5) 

where p is the beta function, 7 is the relativistic parameter and Q is the rms beam 

size. 

Further emittance reduction was accomplished [30] with the use of the fixed tar- 

get collimators at D17. The collimation is capable of reducing the emittance to 

approximately 2~ mm-mrad or less. Specifically, the collimators are first aligned and 

positioned at about 20 mm from the center of the beam pipe. Then an orbit distor- 

tion at D17 steers the beam at the collimators and as a result 90% of the beam is 

removed. The function of the time bump is to steer the beam towards the collimators 

and back to the center. The alternative, which would be to move the collimators 

further in, would result in the undesirable aperture reduction. With sufficiently low 

Booster intensity (1 x 10”) a Tevatron intensity of about 2 x lo*” was achieved after 

collimation, which is approximately 10s particles per bunch (ppb). The resultant 

emittances were ~a N 2rr mm-mrad, zy 2: 8~ mm-mrad and uppIp N 1 x lo-’ where 
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up/p is the rms momentum spread of the beam. The initial values of the emittances 

were approximately 10n mm-mrad in both planes and u,/p 21 1.8 x 10W4. Notice that 

there is no vertical collimation. 

The main mode of operation was to inject up to 20 bunches with a single-bunch 

intensity of 2 - 3 x 10’. 

The following discussion concerns the smear introduced by linear coupling. It is 

demonstrated in the Appendix that linear coupling introduces a smear in the hori- 

zontal direction of order Kz/(vz - Q)‘, where K is the coupling constant and v,, vV 

are the horizontal and vertical tunes respectively. That is, 

(3.6) 

On the other hand the smear in the vertical direction due to coupling, sW, is 

The asymmetry between 5, and 6cy originates from the special choice of the initial 

conditions. (See Appendix.) 

Hence, as long as the analysis involves only the horizontal motion, the smear 

due to coupling can be ignored to a good approximation, provided the coupling is 

sufficiently small. However, in a two degree-of-freedom treatment the contribution to 

the smear from coupling is an order of the expansion parameter larger than in the 

one degree-of-freedom case and should be taken into account. 

Since this smear is caused by linear fields and not by nonlinearities, one wishes 

to minimize it by controlling the coupling constant to K 5 ,001 with the use of a 

skew quadrupole circuit which is controlled through an application program written 

specifically for E778 [33]. Moreover the tunes are separated by -.06 by setting V~ = 

.46 and v, N .40. With the v&es of K, L'= azd v,, given here, the smear err t-r~ 

out to be 

(.OOlY ,02%. 5-z 
"' (.06)z ' (3.8) 
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Chromaticity compensation was performed to better than 2 to 3 units. In or- 

der to optimize the compensation process an “automatic” chromaticity measurement 

method was implemented [34,35]. The principle of the method is given here. Start 

from the definition of chromaticity I, 

(3.9) 

and recall that 

6P I~~RF 
-= --- 

P 7 fRF ’ 
(3.10) 

where fRF is the RF frequency, and 7 is the so-called momentum dispersion function 

defined by 

,,‘-A. 
-if 72 

By combining (3.9) and (3.10) one gets 

(3.11) 

In the high energy limit where 7 > TV, (3.12) becomes 

(3.12) 

(3.13) (= -p-$ 

-ks 

For the Tevatron, 7: = 351. 

Thus by changing the RF frequency by a known amount and determining the 

resulting tune change, one can calculate the chromaticity of the machine. In practice 

the change in the RF frequency was produced by a waveform generator and had the 

form of Fig. 3.7. The amplitude of the waveform was 1 Volt or 53.1 Hz. The position 

of the centroid of the beam was recorded for every turn during the intervals AB and 

CD of Fig. 3.7. From the Fourier analysis of this information, 15v = GAB - vcn was 

extracted and the chromaticity was calculated from (3.13). 
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Waveform generator for chromaticity measurements 
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Figure 3.7: \Vaveform generator for the chromaticity measurements. 
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The closed orbit had to be adjusted at the nonlinearities in order to minimize the 

tuneshifts and other off-center effects. The tuneshift due to an off-centered orbit at 

the E778 sextupoles can be calculated as follows [36]. The tuneshift due to a gradient 

error is given by 

(3.14) 

where p is the beta function at the location of the error, namely the sextupole location 

in this case. From 

B = ;B”z2 j B’ = B”z (3.15) 

and 

(3.16) 

where I denotes the displacement of the closed orbit from the center of the sextupoles. 

For the E778 sextupoles 

B”1 -= 
~BP 

.35/m” at 50 A (3.17) 

B”f! 
- = .007/m’ 
=P 

per ampere. 

SO 

F = &Bz [(g) /I] = (.000113/mm A) x g(*)si, (3.19) 

where /I at the sextupoles is 1OOm and the sum extends over all E778 sextupoles. The 

plus/minus sign takes care of the sextupole polarity. The deviation of the closed orbit 

from the design orbit, expressed in mm, as a function of the longitudinal coordinate 

8, is plotted in Fig. 3.8. The letters C, D, F,... on the horizontal axis mark the 

beginning of the each of the 6 sectors. The table just above the plot, contains the raw 

beam position data used to make the closed orbit plot, at each of the 18 quadrupole 

locations (left column) in each sector (top raw). Recall that the E778 sextupoles 

are located at positions 22, 24, 26, 28, 32, 34, 36, 38 of the C and F sectors. This 
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information yields 

g(*)z; = +3.99mm. (3.20) 

So, one should expect 

Au/I = .OOOS/amp. (3.21) 

In fact this result can be compared with measurements of tune versus sextupole 

current, taken during the E778 run and plotted on Fig. 3.9. The slope of the curve 

of Fig. 3.9 is .0007 / amp. Considering the uncertainties in the determination of the 

tune as well as the errors in the beta functions at the sextupoles, this result is in 

reasonable agreement with the above calculation. 

Finally the coherent synchrotron oscillations at injection had to be minimized. At 

the injection energy of 150 GeV, a phase locking mechanism ensures the matching of 

the two buckets from the Main Ring and the Tevatron. Once the phase is locked, one 

can adjust the energy so as to minimize the coherent synchrotron oscillations. 

Experimental Procedures 

All measurements were carried out at the Tevatron injection energy of 150 GeV. 

A different experimental procedure was followed in each of the four experiments men- 

tioned in the Introduction. The first type of experiment consisted of injecting a beam 

of protons into the Tevatron, then ramping the sextupoles up to the desired setting 

in 10 seconds. After a further 10 second delay, a coherent betatron oscillation was in- 

duced by firing the kicker. The displacement of the centroid of the beam and the beam 

intensity were recorded by the Tevatron BPMs through the Tevatron’s two-minute 

cycle. This is the technique employed during the smear experiment. 

For the injection experiment, the sextupoles were powered when the beam was in- 

jected into the Tevatron and measurements were performed with intentional injection 

steering errors. The recorded data include: the BPM readings during the first turn, 
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Measurement of Tune vs Sextupole Current 
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Figure 3.9: Measurements of tune versus sextupoie current. 
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the closed orbit shortly after injection, turn-by-turn data at injection, beam profiles 

at injection and 9 seconds later and beam intensity versus time. 

The third variety of measurements was associated with the study of resonance 

islands. The procedure was similar to the first one, but here the accelerator conditions 

were adjusted in order to enhance the capture of particles on the islands. 

In the last type of measurements, the emittance of the beam was slowly increased 

by adding noise into the transverse dampers until particles were lost. Using the 

Tevatron flying wires the beam size was measured as a function of the sextupole 

excitation. The limiting beam size was taken to be a measure of the dynamic aperture 

(when it was less than the physical aperture). 



CHAPTER IV 

THE SMEAR EXPERIMENT 

The principal aim of the smear experiment was to determine if the smear is pre- 

dictable from the nonlinear tracking calculations, which are important in projecting 

the performance of existing and future accelerators. The reliability of single and 

multi-particle tracking calculations in predicting other quantities, such as the deco- 

herence time of the beam, the variation of tune with the amplitude and the fraction 

of ‘surviving’ particles (to be defined later), was equally relevant. 

This chapter is structured as follows. A theoretical discussion of the subject is pre- 

sented first, followed by the experimental aspect of it. The chapter is concluded with 

the presentation of the results of this study. In particular, I start with a derivation 

of the smear and the variation of the tune with the amplitude using the formalism 

developed in Chapter II. A discussion on the tracking codes used to simulate the 

experimental conditions follows. The details of the experimental procedure are given 

next. Then, the code used for the analysis of both the experimental and the simulated 

data is described in detail. Finally, the results of the analysis of the data are presented 

and compared with the theoretical predictions from both tracking and perturbation 

calculations. 
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The Perturbative Approach 

The formalism developed in Chapter II is used to derive expressions for the hor- 

izontal smear and the nonlinear tuneshift due to a distribution of normal sextupoles 

in the ring. 

Smear 

Consider the situation where the only nonlinearities in the ring are due to normal 

sextupoles. Let also this derivation be confined to the horizontal plane. Then, to first 

order in perturbation, the distortion of the horizontal amplitude A at phase advance, 

$I is given by 

6d($) = A’{ [-Al(#) sin 4 t &(+) cos 41 t [As($) sin34 - &(ti) cos 341) (4.1) 

as shown in Chapter II, Eq. (2.39). Here 4 is the betatron phase and Al, B1, As, 83 

are the Collins distortion functions defined by Eqs (2.35). 

The single particle smear can be written by definition as 

or 

(4.3) 

where () denotes the average over many turns or equivalently over the betatron phase 

4. From Eq. (4.1) one gets 

s’(4) = ;a’IA:(+) + Bit+) + A:($) + %($)I. 

If the distortion functions are put into arrays 

(4.4) 

RI($)= (1;;;;) R4+1)= (z;;;) 1 (4.5) 
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then the smear is related to the norms of these vectors by 

s’(4) = ;d’{/R# + [Rsl’}. (4.6) 

Recall from Eq. (2.38) that the vectors R,($ + A$) and R3($ + A$) are given by the 

vectors RI($) and RJ($) rotated through angles A$ and 3A11, respectively if there is 

no sextupole between the two points, $ and 11 + A$, 

cos pA$ sin pAll, 

-sinpAll, cospA$ 
(4.7) 

with p being 1 or 3. In passing through a thin sextupole of length & -+ 0 and strength 

ak defined by (2.23), the BP’s are continuous, while the Ap’s jump by ak/4. Thus the 

smear is a constant between two sextupoles but will have a jump when a sextupole 

is crossed. Indeed Fig. 4.1 is the picture one obtains by plotting the smear as given 

by (4.6) as a function of the phase advance around the machine. Sixteen sextupoles 

clustered in two groups of eight located at phase advances in the neighborhood of 

4.5 x 2n and 14.5 x 2n cause these jumps in the smear. 

Further insight can be obtained if one writes explicitly the definition of the dis- 

tortion functions at any point 11, between 0 and ~KV, where Y is the horizontal tune: 

Bd+) = 
Adllr) = 2 sii my T $ sin(v4 - + - xv) , 
B44) = 2 si;3nv T F cm 3(& - 4 - TV) 7 

Ad+‘) = 2 sii3rv T : sin 3(& - ti - TV) . (4.8) 

The summations above are over each sextupole at phase advance $; which is related 

to the Floquet phase & by 

*,; = 
$k if +k 2 $, 

(4.9) 
‘$k + 27W if $k < $ , 



54 

g-,,,,,,,,I,; I I I III" 

El- 

6- 

- v 19.38 = 
5 -1s = 10 Amps 

- 10kV 

4 5 / I 1 I I I I I I I I I ( I I 

0 5 10 15 

Phase advance / 2x 

Figure 4.1: Smear versus phase advance, around the machine, as pre- 
dicted from perturbation calculation. 
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%I#) + -44) = 64si;z AY c 8kak’ cos($; - 11;o) , 
kk’ 

(4.10) 

Similarly, 

IRdti1)l = 81 sinl3rrvl 1Take’3”‘/ ’ 
(4.12) 

(4.11) 

From (4.6) and (4.11), (4.12) one can conclude that to first order in the sextupole 

strength Sk, the smear is proportional to the amplitude of the particle A. Fig. 4.2 

and 4.3 display the smear as a function of the amplitude and the sextupole strength 

respectively. In both cases the smear has been calculated using (4.6), (4.11) and 

(4.12) for the 16-sextupole configuration used during E778. The results of the above 

calculation of the smear, for the experimental conditions at which data were taken 

will be displayed at the end of this chapter. Then these results will be compared with 

the values of smear extracted from the data and from tracking calculations. 

Finally a generalized expression for the horizontal smear due to alI multipoles can 

be found in reference [37]. In the same reference a two degree of freedom calculation 

yields the smear due to sextupoles. 

Tune versus Amplitude 

In Chapter II an expression was derived for the single particle amplitude dependent 

tuneshift due to sextupoles. This is 

Av = -&dsz(3Bls + B@)k, 
k 

where B1 and B3 are given by Eqs (2.35). 

In Chapter IV it will be demonstrated that tuneshifts calculated from (4.13) agree 

remarkably well with the single particle tracking predictions [36]. However it is of 
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Smear versus Amplitude 

Sextupole current 20 amps 

Horizontal tune 19.42 
6- 
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Figure 4.2: Smear versus amplitude, from perturbation calculation. 
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Figure 4.3: Smear versus sextupole strength, from perturbation. 
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interest to examine the effect of the single particle tuneshift on the motion of the 

centroid of the whole beam. Particles of a finite-sized beam are at different amplitudes 

and hence, in the presence of nordinearities, oscillate at different frequencies. So even 

though the amplitude of the centroid of the beam is large right after the beam is 

kicked, it eventually becomes smaller as the various particles occupy more area in 

the phase space, until it vanishes completely. Assuming first that the beam size is 

significantly smaller than the kick amplitude, secondly a parabolic dependence of the 

tune on the amplitude and thirdly a gaussian distribution of particles in the beam, 

the expression for the amplitude at turn N is given by [40] 

d(N) w e-(QJV/2, 

where Q, = 4sAv, Au being the single particle tuneshift. A proof is given in the 

Appendix. In this model, the decoherence time R, of the beam, expressed in number 

of turns, is defined by 

The decoherence time as derived from these perturbative considerations, is compared 

to that from tracking and experimental data in the last section of this chapter. 

Tracking Calculations 

Another way of predicting the values of the smear and the decoherence time of the 

beam in the presence of nonlinearities is by numerically simulating the environment 

of the beam and then tracking its motion for a number of turns. Then an algorithm 

must be developed for the extraction of the relevant quantities out of the motion of 

the particles in the beam. In this section the various simulation codes used in E778 

are described. The discussion of the algorithm is presented in the ‘Analysis’ section. 

Three different simulation codes were used initially for tracking calculations: 

TEAPOT [41], ART [42] and EVOL [43]. They h ave been used both as single and 
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multi-particle codes depending on the type of calculation needed. They all simulated 

more or less exactly the motion of a number of particles in the Tevatron, for the same 

set of parameters the experimental data were taken. The results of the calculations 

were analyzed the same way the experimental data were. All three codes generated 

almost identical data, so only one of them, EVOL, was chosen for copious production 

of simulated smear-data. 

A description of the main characteristics of the three programs is now in order. 

The realistic Tevatron lattice-including magnet field errors and the chromaticity 

correction sextupoles in the Tevatron-served as TEAPOT’s input; it was then trans- 

lated into a similar lattice containing only thin elements. Tracking into that lattice 

is exact. TEAPOT’s output included the position and the slope of the centroid of 

the beam at several locations in the ring, for every turn. These calculations were 

repeated for 512 turns. 

Both ART and EVOL, as opposed to TEAPOT, assumed a lattice which is other- 

wise linear except for the sixteen special sextupoles used to control the nonlinearities 

in the Tevatron. This assumption was justified on the basis of the relative magnitude 

of the sextupole strengths and the harmonic content of the chromaticity-correction 

sextupoles: The current needed for chromatidty corrections in the Tevatron is of 

the order of 1 ampere while the current passing through the E778 sextupoles was 

an order of magnitude higher-from 10 to 50 amperes. Moreover the transfer con- 

stant, defined as the field strength per ampere, of the chromaticity sextupoles is 50% 

lower than that of the E778 sextupoles. Finally, the chromatidty sextupoles have 

been arranged in a way that does not excite any resonances, as opposed to the I3778 

sextupoles. For these reasons the sixteen special sextupoles dominate, and neglecting 

the chromaticity-correction sextupoles is a successful approximation. 

The main difference between ART and EVOL lies on the way the initial dis- 

tribution of particles is defined. ART starts with a randomly generated gaussian 
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distribution of particles in a linear environment. The horizontal emittance of the 

beam, as measured experimentally, is used to calculate the rms beam size. Hence the 

rms of ART’s gaussian distribution is given by the CT as calculated from the emit- 

tame. As the sextupole strengths change adiabatically from zero towards their final 

settings, the particles find themselves moving in the slowly varying nonlinear envi- 

ronment. As a result, the shape of the distribution changes. Thus, tracking begins 

with a deformed-gaussian distribution of particles. This model simulates the process 

of injecting the beam in a linear machine and subsequently ramping the sextupole 

magnets to their final settings while the beam particles circulate in the machine. 

In EVOL on the other hand, the initial distribution of particles is two-dimensional: 

a distribution in amplitude and in phase. A number of particles are uniformly dis- 

tributed within a range of values of the amplitude, however there is a different weight 

associated with each particle. Similar is the phase assignment to each particle. 

Both ART and EVOL typically use approximately 600 particles and track their 

motion for up to 500 turns. The position and the slope of the centroid of the distri- 

bution are recorded at the end of each turn, at the locations of the two beam position 

monitors and the location of the kicker. 

Results from extensive EVOL tracking calculations as compared to the experimen- 

tal data will be shown in the last section of this chapter. Now though, I would like 

to display some examples of the kind of calculations one can perform with tracking 

codes. First in Fig. 4.4 the smear is plotted as a function of the sextupole excitation 

for a tune of 19.42. 

In Fig. 4.5 smear versus amplitude particle is displayed for a tune of 19.42 and 30 

amperes in the sextupoles. Single particle EVOL tracking has generated the data for 

these calculations. 

Also in Fig. 4.6 the tune, as calculated from single particle EVOL tracking, is 

displayed as a function of the particle amplitude for a variety of conditions. Notice 
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Smear vs Sextupole Excitation 
Single Particle EVOL tracking 

12 III I / I I I I I I , I I I I I I I I I I I 

Kick Amplitude 4.5 mm 
10 - Horizontal tune 19.42 

Sextupole Current (amps) 

Figure 4.4: Smear versus sextupole excitation for v = 19.42, as pre- 
dicted from EVOL tracking. 
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Smear vs Amplitude 
Single Particle EVOL tracking 
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Sextupole current 30 amps Sextupole current 30 amps 
10 lo 7 Horizontal Horizontal tune 19.42 tune 19.42 

6 6--- 

6 6- 

4 

/ i 

Horizontal Amplitude (mm) 

Figure 4.5: Smear versus amplitude for v = 19.42 and 30 amperes, 
as predicted from EVOL tracking. 
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the characteristic parabolic (at least for small amplitudes) shape of the curves as 

predicted from analytical considerations. 

The Experiment 

The real test of the validity of the above predictions comes from their agreement 

with the experimental observations. A description of the experiment is given first. 

The experimental sequence started with the injection of a low emittance proton 

beam into the Tevatron. In the next ten seconds the sextupoles were ramped up to 

their final setting. Ten seconds later the kicker fired and the centroid beam position 

was recorded for up to half a million turns in each of the two adjacent BPMs located 

at stations F42 and F44. For the majority of the data the recording was restricted to 

64,000 turns, corresponding to more than one second of real time. 

Measurements were made at various values of four different parameters: the sex- 

tupole excitation, the horizontal tune, the kicker strength and the beam emittance. 

The sextupole excitations varied from 0 to 50 amperes in steps of 5 amperes. An- 

other, perhaps more general way to determine the sextupole strength, is to specify 

the ‘resonance width’ of the third-order resonance, i.e., the width of that range of 

the tune v over which the motion is unstable. For a beam of physical (as opposed 

to normalized, which is multiplied by the relativistic parameter 7) emittance E, the 

resonance width can be defined by equating the beam emittance to the stable area, 

and is given by [12,13] 

A” = A Pot 
2lrG . ( ) 

1’2 (4.16) 

Here Do is the beta function at the reference point and A is a measure of the strength 

of the sextupole configuration and is given by 

A = c 8k CO6 (3&;), 
k 

(4.17) 
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where 4; is defined by 

(4.18) 

and vo = 19 l/3 in the case of Tevatron. When the current through the E778 sex- 

tupoles is 50 amperes, A is 

A N 346 m-l. (4.19) 

In this computation, I have used the proximity of v to vo. At a reference point with 

beta function of 100 m, and a beam of normalized emittance equal to 10a mm-mrad, 

the width of the third-order resonance is 

Resonance width AY = .107, for 50 amperes. (4.20) 

The second parameter varied during the smear measurements was the horizontal 

tune which assumed 5 different values from 19.38 to 19.42 in steps of .Ol while the 

vertical tune was set to 19.46. The kicker strength ww 5, 8 or 10 kilovolts. At the 

HF42 BPM, the maximum horizontal displacement, +I in meters, is related to the 

kicker strength D in kV, by 

z = 0.48 x 1O-sD,/&&, (4.21) 

where & is the beta function in meters at the location of HF42 and ,& is the beta 

function at the location of the kicker E17, so 

z = 0.48 x 10-bD&00.2 x 82.8. (4.22) 

Measured at the kicker, the maximum angle, pk in radians, maximum displacement 

Zk in meters and initial kick strength, D in kV, are ideally related by 

pk = 0.48 x lo-so = *. 
82.8 

Hence the corresponding oscillation amplitudes at the bare Tevatron were 2.19, 3.50 

and 4.37 mm. 
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Measurements were taken at two different ranges of the horizontal emittance. At 

the low range the emittance varied from 1.5~ to 3.77r while at the high range it was 

between 7.8~ and 10.9x. Table 4.1 summarizes the conditions at which low emittance 

data were taken during the smear experiment. The degree to which the value of smear 

as predicted from multiparticle EVOL simulation and from the experimental data, is 

shown on the same table. Three asterisks imply agreement better than 20%. Two 

asterisks imply agreement between 20% and 30%, while agreement worse than 30% 

is denoted by one asterisk. The question mark is used for situations where one could 

not extract a value for the smear. The same notation has been employed for Table 

4.2, which summarizes the conditions at which high emittance data were taken. In 

both tables, the second column displays the kicker voltage in kV while the top raw 

displays the sextupole excitation in amperes. 

Two sets of front end electronics were used for the data recording. The first, 

the standard Tevatron BPM front end, gave direct horizontal, vertical and intensity 

signals. The second is a peak-sensing circuit which gives signals from the separate 

plates of two horizontal and one vertical pickup. A more detailed description of the 

instrumentation including diagrams of the hardware configuration is given in reference 

PI. 
Fig. 4.7 displays the four channels of information as recorded by the standard 

BPM front end. The top plot on the left is the centroid of the beam recorded by the 

HF42 position monitor, while the one right below it, is the signal recorded by the 

HF44 monitor. The top right plot displays the signal from the VF43 monitor and 

the one below it displays the beam intensity recorded by the I-45 intensity monitor. 

Fig. 4.8 shows the same dataset recorded by the peak-sensitive circuit. The top left 

plot displays the signal from one of the plates of the HF42 BPM, while the top right 

displays the signal from one of the plates of the HF44 BPM. The bottom left plot 

shows the signal from the left plate of the VF45 BPM while the signal from the right 
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Table 4.1: Summary of the accelerator conditions at which low emit- 
tance data were taken, in the smear experiment. 
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Table 4.2: Summary of the conditions at which high emittance data 
were taken in the smear experiment. 
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plate of VF45 is plotted on the bottom right plot. All these signals are plotted as 

functions of turn number. 

Finally, only the data recorded by the standard Tevatron BPMs have been an- 

alyzed. The question of calibration of the signals from the Tevatron beam position 

and intensity monitors has been previously [44] addressed. 

Analysis 

This section is devoted to the detailed description of TEVEX, the code originally 

written by Peggs [39], and used almost exclusively for the analysis of both the exper- 

imental and the simulated data. The underlying principle of TEVEX is given first, 

followed by the flow diagram and a general explanation of it. A detailed derivation 

of the form&e used in this section is given in the Appendix. 

The Principle of TEVEX 

The program TEVEX has been developed to analyze both experimental and sim- 

ulated data of transverse nonlinear phenomena. The basic input for TEVEX is zI 

and zl, the positions of the centroid of the beam at two different locations of the ac- 

celerator, for a number of machine turns. For the experimental data this information 

is provided by the recordings of the two BPMs. TEVEX output includes the values 

of quantities which characterize the nonlinear motion, such as the smear, the tune of 

the machine and the decoherence rate. The program displays these quantities as a 

function of the number of turns used for their calculation. 

Several definitions are now in order. The smear is defined, as before, as the 

fractional rms deviation of the amplitude. The amplitude in TEVEX is defined as 

the geometric mean of the amplitudes at the locations of the two BPMs. The tune in 

TEVEX is defined w the number of phase-space oscillations divided by the number 
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of revolutions. 

A choice of the level of sophistication of the analysis is available, which determines 

the procedure followed for the analysis of the data. Thus, at the zeroth level the raw 

data together with the design values of the beta functions and the phase advances are 

combined to give an expression for the amplitude from which the smear is calculated. 

Similarly, from the same information one can derive an expression for the phase 

advance and hence the tune of the machine. 

The next level 1 calculates the average closed orbit offsets at the two BPMs and 

then subtracts them from the BPM recordings. The analysis otherwise remains the 

same as before. 

The beta functions and the phase advance are not really precisely known. The 

principle of TEVEX is that they should also be extracted from the data. This is done 

at the second level of the analysis. The equation of an ellipse in the ~1, zz space 

can be written in terms of the following four parameters: the two closed orbit offsets, 

the ratio of the beta functions at the two BPMs and the phase advance between the 

BPMs. The data are fitted to this ellipse so as to minimize the rms deviation of the 

amplitude-the smear. The four parameters above are determined as a result of the 

fit. They are subsequently used for the calculation of the smear, the tune, etc. 

At the last level 3 the multi-particle aspect of the analysis is addressed. The 

presence of a finite-sized beam in a nonlinear environment gives rise to an apparent 

amplitude d ampmg due to the decoherence of the particle motion. TEVEX assumes ’ 

a gaussian model [40] for the decoherence. The standard deviation of the gaussian 

curve, which is defined in TEVEX to be the decoherence time, is the fifth parameter 

to be determined by a minimization fit. Now the data are fitted to the ellipse as 

before, but there is also a gaussian factor multiplying the equation for the ellipse. 

The fit determines the five parameters which are then used again to process the data. 

At the end a summary of the results is reported and graphical outputs are avail- 
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able. 

In the following the discussion will be restricted to the horizontal plane only, even 

though TEVEX provides a limited two-degree of freedom analysis. 

Program Organization 

The flow diagram of TEVEX is given in Fig. 4.9. I shall follow this diagram 

and explain the physical meaning of each structure. TEVEX first obtains the ‘global 

control parameters’ supplied by the user. These parameters control the format of 

the input data, the filtering of input and output data, the persistent signal analysis, 

the discrete Fourier transform analysis, the resonance analysis, the fitting procedure 

and the graphical output. The design lattice parameters are also included. The file 

which contains this information is called TEVEX.CMD. The exact file is shown in 

Fig. 4.10 with typical values of the various parameters. The comments included in 

the file explain briefly the meaning of each parameter. 

Next, TEVEX reads the phase space information which consists of the positions 

of the cent&d of the beam at two locations (BPMs for the experimental data) for a 

number of turns. TEVEX has the capability of analyzing data coming from a variety 

of sources. Specifically, it analyzes experimental data taken during the 1987 E778 run 

and stored in the form of ASCII files, data stored in the shared memory, simulated 

data from EVOL and simulated data from TEAPOT. Finally there is a version of 

TEVEX which runs only with shared memory on UNIX V on the SUN Workstations. 

A filtering of undesirable frequencies, for example the self-induced synchrotron 

frequency, from the raw position and intensity data can be done next. The user 

specifies the region of tune values to be filtered. Fig. 4.11 shows the effect of filtering 

the synchrotron frequency from raw position data. 

At this point the user chooses the level of the analysis. Once the analysis level has 

been chosen, the range of data to be analyzed is determined either automatically or 
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by the user. Let ni denote the turn number on which data start, and nf denote the 

turn number on which data finish. Suppose that the analysis starts at turn number 

II., which is usually the kick time, with n, 1 ni. Also let nd and n.f denote the 

first and last turn number at which the quantities of interest, e.g. smear, may be 

calculated. Notice that nd must be greater than n. + 5 because at least five data 

points are needed to determine the five parameters from the fit described above. 

At this point the ranges of the tracking data, the analysis and the calculation are 

determined. These various ranges of data are shown in Fig. 4.12. The displacement 

of the centroid of the beam as a function of turn number for 200 turns is plotted in 

Fig. 4.13(a). Exactly below is Fig. 4.13(b) which displays the smear corresponding 

to the same data as a function of the number of turns used for its calculation. So, 

for example, the value of the smear at the n-th turn is obtained by processing data 

from turn number n. to n. Similarly the value of the smear at the (n + 1)th turn is 

obtained from data between n. and (n + 1) turns. 

The average values of the digitized data as well as their limits are calculated next 

in the range between the first turn used for the analysis n,, and the last turn used 

for the calculations, n.f. 

The final step before the calculations start is to prepare the vector with the fitting 

parameters for each one of the four levels of the analysis. 

From now on I shall concentrate on one level of analysis at a time since the 

calculational techniques can be quite different for different levels. 

Level 0 

The purpose is to calculate the smear and the horizontal tune of the machine for 

every turn, from the recordings of the two BPMs. 

Again as before, suppose that tracking data start on turn ni and finish on turn 
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n,, and the analysis starts at the kick time which occurs on turn n.. The goal is to 

calculate the smear and the tune at turn n, starting from turn number nd and ending 

at turn number n,f. By definition 

smea*(71) = m 
(4 ’ 

(4.24) 

where the average is calculated over the range (n.,n). The amplitude a. is defined 

in TEVEX to be the geometric mean of the amplitudes at the two BPMs. That is 

2 
a, = %1%2, (4.25) 

and is given by the expression 

a.(n) = cllz:(~) + c,,r,(n)z,(n) + cl*+:(n), 

where the various coefficients are defined by 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Here p.1 and pip are the design horizontal beta functions at the locations of the two 

BPMs. q&a is the design phase advance between the two BPMs. Notice that the 

two BPMs used in E778 were one cell apart, hence the subscript of 4. The proof of 

(4.26)(4.29) is given in the Appendix. At this level the values of the beta functions 

and the phase advance are the design values. 

The next goal is to calculate the tune at turn 7~. In TEVEX the tune Qz is defined 

to be 

Q=Cn) = 1 d(n) - 4(4 
2a n-n; ’ 

(4.30) 

where d(n) is the phase advance in the middle of the two BPMs, at turn n. d(n) is 

computed in TEVEX from the formula 

(“Bl+ q?l)l cos (kll/2) 

4(n) = arctan(zg2 - zpl)/ sin (q&d/2) ’ 
(4.31) 
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where zpl and zig are given by 

i= 1,2 (4.32) 

and zl,za are the recordings of the two BPMs. A proof of (4.31) is given in the 

Appendix. Recall that at this level the design values of the beta functions and the 

phase advance are used. 

At the end of the calculation TEVEX reports a summary of the results. A separate 

line for each turn of the analysis is written out containing the following information: 

the turn number n, the amplitude a.(n), the smear s(n), the tune Q.(n), the average 

closed orbit offset at the first BPM zloff, the average closed orbit offset at the second 

BPM zZo~, the value of the beta function at the first BPM &, the value of the beta 

function at the second BPM p.1, the phase advance between the two BPMs &d and 

the decoherence rate R(n) which has no value at this level and becomes different from 

zero at the third level. The closed orbit offsets are also zero at this level while the 

values of the two beta functions and the value of the phase advance are equal to the 

design values and hence constant for every turn n. 

A typical TEVEX output of the analysis of experimental data is presented in 

Fig. 4.14. The analysis was performed at level 0. The global control parameters 

assumed the values shown in Fig. 4.10. The corresponding graphical output is given 

later. 

Level 1 

The analysis at level 1 is very similar to the analysis at level 0, the only differ- 

ence being that now the average closed orbit offsets are subtracted from 21 and ~1. 
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Specifically at this level the amplitude a= defined by (4.25) is given by the expression 

a,(n) = c11(+1(n) - ZM)' + C11(21(~) - hT)(z2(n) - ClOff) t c22(22(n) - 22off)~. 

(4.33) 

Here zlos and ~a.,* are the average values of z1 and zs in the range between the first 

turn used in the analysis, n., and the last turn used for the calculations, n,f. The 

coefficients qjr ij=1,2, are defined in (4.27), (4.28) and (4.29) and again the beta 

functions as well as the phase advance assume their design values. 

The calculation of the horizontal tune at turn 12 involves the phase advance +6(n) 

which has been defined in (4.31) in terms of “01 and zpz. As expected zpI and zga 

are now given by the expressions 

+i - %ff 
w = fi i = 1,2. (4.34) 

Otherwise the tune calculation remains unchanged. 

Finally the values of the average closed orbit offsets are reported in the final 

summary of the results. At this level their values remain constant throughout the 

range where the calculations are performed. 

Level 2 

At this level the calculation of smear and tune is substantially different from the 

calculations of the previous two levels. Since neither the beta functions at the two 

BPMs nor the phase advance between them are known, an attempt is made to extract 

this important information from the data. This is realized in the TEVEX analysis 

performed at a level greater than 1. 

At level 2 the amplitude as defined by (4.33), and hence the smear, can be viewed 
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as a function of the components of the following 4-dimensional vector 

vi, = 

I 

21off Qoff 
4dll~ &mi 

(4.35) 

The parameters zlO* and zlO,q are defined as in level 1 analysis, while &I, PI1 and 

P =a are initialized to their design values. 

A new vector v,,~, 

hR/f 

(4.36) 

is computed such that the smear expressed in terms of these new components is a 

minimum. This multidimensional minimization is accomplished by the downhill sim- 

plez method [45] of Nelder and Mead. The If denotes that these are fitted parameters. 

The above procedure is repeated for every single turn of the data and hence a new 

fitting vector v.,,~ is calculated for every turn. The new coefficients are now used 

to process the data, that is to compute the smear and tune for every turn. Thus, 

the calculation of the smear is straightforward since it involves precisely the 4 new 

coefficients which minimize it. 

In order to calculate the phase advance - and hence the tune - one needs to know 

the value of each beta function separately. However only the value of the ratio of the 

two betas is known. To circumvent this problem the product of the two variable betas 

is constrained to be equal to the design product of the two betas and thus each beta is 

calculated separately. It has been demonstrated, by experience., that this hypothesis 

is reasonably accurate. Note also that the phase advance between the two BPMs 

and the closed orbit offsets entering the tune calculation are given by the appropriate 
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components of vomt. 

The final summary reports the values of the same physical quantities as before 

but now the fitting parameters have taken the place of the design values. Only the 

decoherence rate, rdec(n), continues to be 0 for every turn n. 

Level 3 

Multi-particle considerations have not yet been taken into account. In the previ- 

ous three levels of analysis the measured amplitude has been considered as a constant 

in time. This is clearly not true. It was shown earlier that nonlinearities give rise 

to amplitude-dependent tuneshifts, which in turn cause an apparent damping of the 

amplitude. It is shown in the Appendix that, under certain assumptions, the expres- 

sion for the amplitude at turn n contains a decoherence factor of gaussian form and 

is given by 

n’R’ 
a.(n) = e-7 cllz;yn) + c124(n)4(n) t w;2(n), (4.37) 

where 

r:(n) = z;(n) - zi,fl(n) i = 1,2. (4.38) 

Also recall that equation (4.37) defines the decoherence rate R in units of inverse 

turn number. So now the amplitude and hence the smear, can be considered as 

functions of the components of a 5-dimensional vector, vrr, 

u, = 

??c.ff 

4dP 

&G7iG 

Ra/2 

(4.39) 
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As in level 2, one tries to determine a set of new coefficients, v,,t, such that the smear 

is a minimum. Using these new coefficients the smear can be computed as well as the 

tune and also the decoherence rate. Fig. 4.15 displays the TEVEX output of data 

analysis performed at the 3rd level. Same data as before (Fig. 4.14) are analyzed and 

the same TEVEX.CMD tie is used (Fig. 4.10). The corresponding graphical output 

will be given at the end of the next section. 

Finally, there are cases where the variation of amplitude with time does not follow 

a gaussian behavior. This is the circumstance of the persistent signals, for example, 

to which I shall come back. 

Analysis after the ‘Final Turn Do-Loop’ 

At this stage, the major part of the analysis has been completed. Information 

of statistical nature on the beam intensity, the amplitude, the ‘slow phase’ and the 

Fourier spectrum is calculated and reported next. 

The beam intensity was recorded by the Tevatron intensity monitors (I-45) for a 

number of turns. Fig. 4.16 shows raw beam intensity data for 4000 turns. However 

synchrotron oscillations significantly affected the signal and any reliable intensity 

measurement requires filtering of the synchrotron motion. Hence the calculation 

of the beam intensity before the kick occurs is done in TEVEX by averaging over 

one synchrotron period before the kick. Similarly the beam intensity after the kick is 

calculated as the average over one synchrotron period, 100 turns after the kick. Finally 

TEVEX quotes the maximum and minimum intensity values for a given dataset. 

Next is a report on the amplitude statistics. The average, maximum and minimum 

values of the two BPM signals as well as the minimum and maximum values of the 

amplitude are reported. 
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The slow phase is a parameter defined by 

where ml/n’ is the nearest resonance. Similarly the ‘slow tune’ is defined as 

*d(n) = hdn + 4 - Al(n) 
n’ 

It has already been mentioned that in most of the analysis performed ml/n’ = 215, 

TEVEX calculates the slow phase as a function of turn number. It also computes 

the average of the slow phase and the slow tune over n’ turns and the change in the 

average slow phase from turn to turn is recorded. 

This last piece of information is used for a search of discontinuities in the slow 

phase. Any phase jumps greater than a pre-specified tolerance level - 0.1 - is 

reported in the output fde as a warning for non-reliable data. The biggest phase 

jump is always reported independently of its magnitude. 

At this point TEVEX proceeds with the analysis of the persistent signals. These 

new computational techniques though will be developed in the resonance island chap- 

ter. 

The last calculation TEVEX performs is a discrete Fourier transform of the BPM 

signals. This is followed by a report on the strengths of the two harmonics on either 

side of the peak. 

The analysis of a given dataset has been completed here and the user is given four 

options: to quit the analysis by obtaining a summary graphical output, to quit the 

analysis and obtain detailed graphical outputs, to return for new analysis of the same 

dataset or to return for analysis of a new dataset. 

If the first option is chosen and if the analysis was performed at the zeroth level, 

then the graphical output looks like Fig. 4.17. In fact this is the graphical output 

corresponding to the text output of Fig. 4.14. The graphical output which corresponds 

to the text of Fig. 4.15, where the analysis level was 3, is shown in Fig. 4.18. The 
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first plot of these C-plot graphs displays the first horizontal BPM recordings, zcl as a 

function of the turn number. The amplitude as a function of turn number is plotted 

on the second graph. The amplitude as a function of the phase advance (expressed in 

units of 2x) is next on the third plot. It is essentially an action-angle representation 

of the data. The lower left and middle plots display the smear and tune respectively 

as functions of the number of turns used for their calculations. Finally the fitting 

parameters, ziO,r, zsOa, pi, a, &r and decoherence rate R, are plotted against turn 

number on the sixth graph. 

If the second option was chosen, then a number of different graphs are created. 

For the same data used above, analyzed at the third level, the following graphical 

output option is presented: Beam current versus time, horizontal discrete Fourier 

transform, horizontal phase versus turn number, horizontal slow phase versus turn 

number, horizontal displacement from the second BPM, zr, versus turn number, and 

zr versus zr. It was mentioned before that TEVEX is a two-degree-of-freedom code; 

as such, capability exists for graphical representation of the same quantities as above 

but on the vertical plane. 

Results 

The results of the three-fold study described above--experiment, tracking calcu- 

lations and analytical calculations-are presented here. 

In Fig. 4.19 smear is plotted against the sextupole excitation expressed in am- 

peres, for five different tune values (1938 to 19.42). The three curves in each of the 

five plots correspond to the three different kicker strengths. The dashed lines rep- 

resent prediction from tracking calculations while the solid lines correspond to the 

experimental data. All these data were taken with a low emittance beam (emittance 

ranged from 1.51~ to 3.7x). The agreement between experimental and tracking results 

is very good. 



93 

E xo!zwmssm 
W 

3 
2 

2 2 
LD m 

? 
I 

:: 

/ 

% 

? 

Q 

w 

4 

% ’ x 
0 ’ 

o- 

~~~~~I~~~~r~llllllllIlll~ 
P x 0 0 - a0 

4 4 

s s 

r r 4 4 
I I 
s s 13 13 

z z 

% w m3AS SRH % w m3AS SRH 
5: 

s 

7 4 
I 
6 x 

0 

8 

s 2 ‘2 
2 c 
c ii 
2 0 
2 2 
2 iz 
p 3 
g g 
t; ; ; z 

: 

ZKi 
E-2 “pm-c 

E ‘0, 
E - 
z 4 
2 E 
2 .G 
ob 
3 ‘; 
63 

Xrnavmssrm x w UKxlts snlr 



94 

Fig. 4.20 illustrates the same quantities as before, the only difference being the 

beam emittance which ranged from 7.8~ to 10.9a here. The agreement between 

experimental and simulated data is still good, but somewhat worse than for the low 

emittance beam data. This is due to the fact that higher emittance beam decoheres 

faster because of the wider spread of amplitudes in phase space. The smear, on the 

other hand, is extracted before the beam decoheres. Hence for a higher emittance 

beam the smear has to be extracted from a fewer number of turns which is frequently 

not adequate for an accurate determination of its value. 

A comparison between the predictions of perturbation theory -the smear has 

been calculated using the previously derived formula (4.6) and (4.11), (4.12)- and 

experimental data for a low emittance beam is in Fig. 4.21. Again the three different 

curves in each of the five plots correspond to 5, 8 and 10 kV of the kicker strength. 

Notice that even though the agreement is very good for low current - low kicker 

amplitude data points, the agreement deteriorates as one moves to higher currents 

and kick amplitudes. Obviously perturbation theory does not faithfully describe the 

situation in these regime of the data. The nonlinearities are too strong to be handled 

perturbatively. On the other hand, one could argue that the disagreement is due 

to the fact that the perturbative calculations stopped at first order in the sextupole 

strength. Perhaps the agreement would be better had they been continued to second 

order. Similar remark8 can be made for Fig. 4.22 which compares perturbation and 

tracking calculations. Also notice that in the perturbative calculations, the smear 

varies linearly with the sextupole strength as expected from Eqs (4.6) and (4.10). 

The smear as a function of the kicker strength expressed in kV, is plotted for 

various conditions and for low and high emittance beam in Fig. 4.23 and Fig. 4.24 

respectively. The previous comments can presumably explain any disagreement 

between simulated and experimental data. The most noticeable feature of these plots 

is the linearity of the smear as a function of the kick amplitude, in agreement with 
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the analytical formula 

Results on the ability to predict the decoherence time are presented next. Fig. 4.25 

and Fig. 4.26 illustrate the decoherence time as function of the sextupole excitation 

for experimental (data points) and simulated (solid curves) data, for various values 

of the tune, kicker strength of 5 kV, and low and high emittance respectively. The 

decoherence time is measured in number of turns. Figs 4.27 and 4.28 display the same 

quantities but at 8 kV kicker strength and finally Figs 4.29 and 4.30 are the 10 kV 

analogues. There are two major points of observation in these three sets of data. 

The first is that the disagreement between tracking calculations and experimental data 

is bigger for the loa kick amplitude than for the 8 and 10 kV cases. The second point 

is related to the consistently observed disagreement between tracking calculations 

and observation at low sextupole excitation (10 amperes). The conjecture is that 

both points can be explained as follows. There exist residual nonlinearities in the 

Tevatron (chromaticity-correction sextupoles) which have not been taken into account 

in the simulation. These nonlinearities have a relatively stronger effect when they are 

superimposed on relatively weak controlled nonlinearities (low current). The effect is 

negligible when compared to a highly nonlinear situation. Moreover the decoherence 

time extracted from the experimental data is shorter than that from simulation as 

expected according to this argument. 

Table 4.3 displays the tuneshift as calculated using Eq. (4.13) and as extracted 

from the curves of Fig. 4.6 for a 5 kV kick. The agreement is remarkably good. 

The dependence of the tune on the amplitude is checked for the experimental data, 

in Fig. 4.31. The tune offset is plotted against the strength of the kicker magnet, 

expressed in kV. The smooth curve, an extrapolation into the origin assuming the 

thenretical!g rredic!ec! zrvat:re, agrees vith the differently measured zero em$itzde 

value: whose error bar is an estimate of the relative uncertainty of the two methods. 

A strong deflection of the beam, in the presence of strong nonlinearities! can place 
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Figure 4.31: Experimental data illustrating the dependence of tune on 
the amplitude. The smooth curve is a fit to the data. 
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Sext Strength (Amps) AY 

Perturbation Single particle tracking 

10 5.098 x lo-’ .00050 

20 2.039 x 10-Z .0020 

30 4.588 x 1O-3 .0050 

Table 4.3: Amplitude-dependent tuneshift as calculated from per- 
turbation theory and kom single particle tracking. The 
agreement between the two methods of calculation is re- 
markably good. 

the beam outside the stable region limited by the ‘separatrix’. Hence, even though 

most of the beam is kicked inside the dynamic aperture when the sextupole excitation 

is 30 amperes at a tune of 19.39 and a kick of 5 kV, the opposite is true for the same 

conditions but a kick of 10 kV as Fig. 4.32 illustrates. It is shown later (Chapter 

VII) that the stable area decreases with the increase of the magnitude of nonlinear- 

ities. Particles kicked outside the separatrix will eventually get lost. Furthermore, 

the fraction of the beam which survives for each set of accelerator conditions is of 

importance, especially in explaining certain discrepancies between calculations and 

observations. Hence it is of interest to calculate the fraction of surviving beam after 

the kick, for a variety of conditions and compare it with the recordings of the Teva- 

tron intensity monitor I-45. The results are displayed in Fig. 4.33. The two different 

symbols employed for the experimental data distinguish between more and less reli- 

able measurements. The source of this uncertainty is related to the calibration of the 

intensity monitor signals [44]. G eneral agreement between simulation and observation 

has been established. 

Before this chapter is concluded, I would like to stress the success of tracking 

calculations in predicting the values of the smear and the tune in the near-linear 

region of the phase space. This conclusion enhances the confidence in nonlinear 
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tracking calculations in predicting the performance of future accelerators. It is also 

important to notice that one can rely on perturbation theory to describe the motion 

in this particular region (for small amplitudes); a technique which saves computing 

time and allows for more generality. 



CHAPTER V 

THE INJECTION EXPERIMENT 

The Experiment 

This experiment addresses the question of correlating the smear with routine accel- 

erator performance such as injection efficiency and particle lifetime. The experimental 

technique used involved setting up the Tevatron with the sixteen strong sextupoles 

powered to excitations of 0, 15, 30, 40, 45 and 50 amperes. Beam was then injected 

both onto the closed orbit and off the closed orbit by 1.5 mm. The injection of the 

beam with a steering error was produced by a deflection kicker. The magnitude of the 

kick was 4 kV. Fig. 5.1(a) displays first-turn data at a horizontal tune of 19.42 and 0 

sextupole excitation, while the beam was matched onto the closed orbit. Fig. 5.1(b) 

shows again first-turn data taken under the same accelerator conditions, except that 

a steering error was introduced. In Fig. 5.1(c) the difference of these two orbits is 

displayed, which is an oscillation with amplitude of 1.5 mm. 

At each sextupole setting the orbit was smoothed and the tune adjusted to the de- 

sired value. The experiment was performed at tunes of 19.38 and 19.42. The recorded 

data include 

1. First-turn position monitor data 

2. Closed orbit data recorded 50 msec after injection 

112 
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10 

Figure 5.1: First-turn data taken with the sextuples turned off, (a) 
without, (b) with a steering error of 4 kV, and (c) their 
difference. 
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3. Turn-by-turn data at injection recorded by two BPM’s at HE24 and HE26 

4. Flying wire data at injection at HC48, HA17 and VC48 

5. Flying wire data at the same locations as above, but 9 seconds after injection 

6. Beam intensity versus time. 

Results 

Typical datasets, results of the analysis and their interpretation are presented for 

each of the six sets of data recorded during the injection experiment. 

First-turn position monitor data are studied first. Fig. 5.2 displays the difference 

between first-turn data taken by injecting the beam on the closed orbit and off of the 

closed orbit. The sextupole excitation was 45 amperes and the tune 19.42. In order 

to determine the effect of a strongly nonlinear environment on the first turn after 

injection, Fig. 5.1(c) and Fig. 5.2 are overlayed. The result is Fig. 5.3. Obviously 

the first turn orbit changed by less than a millimeter between sextupole strengths of 

0 and 45 amperes. The same result holds true for tune of 19.38 and for the other 

sextupole settings. 

Closed orbit data (also called display frame data in the Fermilab jargon) recorded 

50 msecs after injection onto the closed orbit are shown in Fig. 5.4(a). The tune here 

was 19.42 and the strong sextupoles were turned off. Fig. 5.4(b) displays closed orbit 

data taken under the same conditions, but now the beam is injected with a steering 

error. The difference of the two orbits is plotted in Fig. 5.4(c). It is worth noticing 

that there is no sign of the steering error at injection on the display frame. The 

closed orbit is taken late enough (a few hundred turns after injection) for the beam 

to decohere and average very close to zero. 

Fig. 5.4(d) displays a difference of two closed orbits-injected with and without 

a steering error- in the presence of sextupoles excited at 45 amperes. The tune is 
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Figure 5.4: Displa,! frame data, at 0 amps and a tune of 19.42, (a) 
without and (b) with a steering error. The difference 
is illustrated in (c). Another such difference, with the 
sextupoles powered to 45 amps is illustrated in (d). 
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again 19.42. There is practically no difference between Fig. 5.4(c) and Fig. 5.4(d). 

Turn-by-turn data at injection were recorded for 1024 turns by two horizontal 

BPM’s at HE24 and HE26. No significant deterioration was observed as the sextupole 

excitations advanced from 0 to 50 amperes. 

Hence the conclusion that can be drawn from the above three items is that in- 

jection diagnosis and correction functioned satisfactorily up to the largest sextupole 

settings for a typical injection offset of 1.5 mm. 

The Tevatron flying wires were flown at HC48, VC48 and HA17, .25 seconds after 

injection and 9 seconds later. AU three wire profiles revealed significant beam losses 

at high sextupole current. An interesting pattern shown in Fig. 5.5 occurred at HC48 

and VC48 but not at HA17, namely the ‘tails’ of the beam profiles. This pattern is 

present only at the profiles taken at 5.35 seconds and only at high sextupole currents. 

It is due to DC beam losses occurring at the C48 location. By the time of the second 

fly-14.35 seconds-the particles outside the RF buckets have been spread completely 

around the machine leaving no trace on the new profiles. 

The last quantity recorded in the injection experiment was the beam intensity as a 

function of time. Fig. 5.6 is a summary of the observations. The fractional beam loss 

in the first five seconds after injection is plotted as a function of sextupole excitation. 

The four curves represent injection onto the closed orbit and injection 1.5 mm off of 

the closed orbit at two different values of the horizontal tune. In each case, there 

was apparently a threshold sextupole current above which loss was found. Much of 

the loss was slow as shown in Fig. 5.7, which is a typical plot of the beam intensity 

in the Main Ring and Tevatron. Here the sextupole excitation was 45 amperes and 

the machine tune was 19.42. The transfer of the beam from the Main Ring to the 

Tevatron took place at 5.1 seconds. 

In an attempt to understand this slow loss of particles it was found that the time 

structure of the early loss, as seen on the scintillation counters associated with the 
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(b) 

Figure 5.5: Flying wire data from the Tevatron at C48. The sex- 
tupole excitation was 45 amps and the tune 19.38. In 
(a) there was no steering error; in (b) there was a steer- 
ing error of 4 kV. Profiles (1) were taken .25 sets after 
injection, and profiles (2) were taken 9 sets later. 
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born intensity vs. Time for 45 Amps, tune = 19.42 
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Figure 5.7: Beam intensity in the Main Ring and Tevatron as a func- 
tion of time for a sextupole excitation of 45 amps and a 
tune of 19.42. 



122 

flying wires, contains a component at the synchrotron frequency: the difference in 

time, between the two major peaks of Fig. 5.8 is approximately 15 msccs, which 

corresponds to about 70 Hz. This was a hint that the longitudinal motion may play 

a role. The slow loss issue was investigated further with the RF cavities turned 

off this time. Further detuning of the cavities w&s accomplished by turning off the 

water heaters. The heaters are used to adjust the physical dimensions of the cavities 

and thus their resonant frequency. Fig. 5.9 summarizes the new results: a dramatic 

reduction of the losses was achieved by turning the RF off; cooling the cavities effected 

further reduction of the losses. However much more effort is needed in order to 

understand the underlying mechanism causing these phenomena. 

It was demonstrated experimentdy-in one degree of freedom-that short time 

scale accelerator performance like injection efficiency and particle lifetime, are not 

influenced significantly by the presence of strong nonlinearities in the machine, hence 

allowing a safe diagnosis and correction of injection problems. 
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Figure 5.9: Summary of the results on the losses after the RF x-as 
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CHAPTER VI 

RESONANCE ISLANDS 

In the resonance island experiment the existence of stable nonlinear resonance 

islands was demonstrated by directly observing particles captured into them. The 

‘capture efficiency’ was measured as well as other characteristics of the islands such as 

their amplitudes and phases, which determine their location in phase space. Although 

particle trapping was observed on the 3/B and 5/13 resonance islands, systematic data 

taking was restricted to the 215 resonance. 

This chapter is structured as follows. First, the results obtained in Chapter II are 

used to derive expressions for the island width and the island tune. In the following 

section tracking calculations will be employed to first demonstrate the existence of 

the 2/5 islands and then estimate the various quantities of interest. The experimental 

observations will be layed out next, followed by a description of the analysis techniques 

employed to extract information out of the data. The results of the calculations and 

the analysis of the experimental data conclude this chapter. 

Island Width and Island Tune 

The calculation of Chapter II led to the following expression for the 2/5 resonance 

Hamiltonian, 

&(a,l)= VI+ cl'+ ~J~'~cos[(5a- 978)+ +,] (6.1) 
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with 

and 

126 

co = &TFg (6.2) 

40 = arctan (-z) . (6.3) 

E* and l z were defined by Eqs (2.101) and (2.102). 

To derive the expressions for the island width and the island tune, I follow the 

traditional technique [17,16]. A canonical transformation to a rotating system in 

phase space with the generating function: 

Fz= (6.4) 

leads to 

and 

Vi’ = + (5~ - 976 + do), (6.5) 

I = II (64 

with 

Hs(a!,I*) = bI> + c1: + QJ;‘2cos (5\E‘), (‘3.7) 

The Hamiltonian has been put in a form explicitly independent of the “time” variable 

6; thus it is a constant of the motion. 

The fixed points of the motion, where the trajectories are stationary, can be 

obtained by the conditions: 

(6.9) 

which imply 

sin 5P. = 0 (6.10) 

and 

I5 + 2c1, + $z;” cos (5v!,) = 0. (6.11) 
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For sin 5!?s, cos 5go = fl and for different signs of cos 5’$s the characteristics of the 

fixed points are different. It can be shown [lQ] that those angles corresponding to 

cos 5’I’o = 1 are stable fixed points (SFP) while those with cos 5’I~s = -1 are unstable 

fixed points (UFP). Both stable and unstable fixed points are shown in Fig. 6.1. 

The boundaries of the stable islands are formed by curves joining the unstable 

tied points. They are called separatrices and their equation can be easily found by 

the fact that the Hamiltonian is a constant on the curve. Setting the constant value 

of the Hamiltonian equal to its value at the unstable fixed point, I”, one gets, 

az, + cz: + QJy co* 5T! = 61, + cz: - Eozy. (6.12) 

The action I,, of the unstable fixed points satisfies the equation 

5 
6 + 2cIu - -q$.y = 0, 

2 
(6.13) 

as can be easily seen from Eq. (6.11). H ence given eo, c and 6, I, can be computed 

and the constant value of the Hamiltonian can be found. Then one can draw the 

separatrices given by Eq. (6.12). This is illustrated in Fig. 6.1. In this particular case, 

the various coefficients are calculated as follows. The parameter c of the detuning term 

cIf, is calculated with the use of Eq. (2.100). For the E778 sextupole configuration 

with sextupole excitation of 25 amperes and a tune of 19.415, c is calculated to be 

c = -47.21 mm-‘. (6.14) 

The calculation of co is relatively straightforward with the warning that formula 

(2.32) holds true only for 0 < B < 2a. For the above experimental conditions, E,, 

turns out to be 

l 0 = 18.30 mm --3/a . (6.15) 

Finally one can calculate I,, which satisfies the equation (6.13). This is a cubic 

equation in I:/’ so it can be easily solved. For the above values of c and ~0, the 
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Figure 6.1: Contours of the Hamiltonian describing motion under the 
action of a fifth-order resonance. The sextupole excita- 
tion is 25 amperes and the initial tune 19.415. 
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physically acceptable solution is 

Z, = 1.6 x lo-’ mm. (6.16) 

Then the amplitude of the unstable fixed points is calculated to be 

d,, = 5.66 mm. (6.17) 

From Fig. 6.1 one can extract the island width being the maximum separation in 

amplitude of the two separatrices. It turns out to be 

Aa,la,, = .57 mm. (6.18) 

However one can actually derive an expression for the island width [15,17]. This 

calculation is demonstrated next. 

If Z, is the resonance action defined by 

v+2czv=;, (6.19) 

then Eq. (6.12) can be written in the form 

cz: - 2czxz, + Eozy cos.5~ = cz; - zcz,z, - cozy. (6.20) 

Expanding for Z1 close to Z, gives the difference of the amplitude between Zl and I,,, 

(I, _ .)a N 2eoZY(12; cos 5@), 

From here the maximum separation or the island half width is 

(6.21) 

(6.22) 

Using the values of co, c and Z, given by Eqs (6.15), (6.14) and (6.16) respectively, 

one finds that the island width as calculated from Eq. (6.22) is 

Aa,l,ormd = .56 mm, (6.23) 
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in remarkable agreement with Eq. (6.18). The conclusion from this agreement is that 

the approximation used in the derivation of Eq. (6.22) is very accurate. 

The island tune QI can also be expressed in terms of the coefficients eo and c and 

the resonance action Z,. In order to derive an expression for QI [17], I need to see the 

Hamiltonian in the vicinity of Z,, that is, around the center of the island. For this, 

the Hamiltonian (6.7) is expressed in terms of p, where 

L=PSZ*, (6.24) 

and 

H = cpa + c*zy cos 5*, 

where constant terms have been dropped. 

The equations of motion in (T?,p) coordinates are 

(6.25) 

and 

p = -g = 5eOZ,Slasin5q. 

Combination of the two equations gives 

i! - 10eocZs” sin 5* = 0 t (6.28) 

or 

4 + lOe~~~1Z~~‘sin 5!P = 0. (6.29) 

This is the familiar equation of motion for a pendulum. When the amplitude is 

small, the small amplitude oscillation frequency Q, can be obtained from (6.29) by 

approximating 

sin59 N 5*. (6.30) 

This yields the island tune, 

Q; = 5’(2/cl)eoZ;/‘. (6.31) 
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Substituting c and eo from Eqs (6.14) and (6.15), and solving (6.19) for Z,, one finds 

that 

Qr = 4.9 x lo-sx”, (6.32) 

where d, is the resonance amplitude, measured from the origin of the phase space. 

The coefficient 4.9 x 10-s is expressed in mm-S/a. 

Single and multi-particle tracking calculations were performed to study the reso- 

nance island region of the nonlinear phase space, using mainly EVOL and occasionally 

TEAPOT and ART. 

Single particle tracking provides a clear picture of the location, size and configura- 

tion of the 5 islands, an action-angle representation of which is displayed in Fig. 6.2. 

To obtain this particular figure, the base tune was set equal to 19.415, the sextupole 

excitation being 25 amperes. In principal the transformations derived in Chapter II 

can be used to map the actual shape of the islands of Fig. 6.2. The kick amplitude 

was 5.25 mm. 

From Fig. 6.2 one can see that the average resonance amplitude A, is approxi- 

mately 

A,[,, N 5.95 mm (6.33) 

in reasonable agreement with the calculation above (Eq. (6.17)). In order to compare 

the island widths as derived from the two methods, one must first define the island 

width from tracking calculation, in Fig. 6.2. If the island width is defined as the 

average island width over the five islands then 

AaWl,, N .41 mm. (6.34) 

The discrepancy between the two approaches in the determination of the island width 

is not very surprising. The Hamiltonian used to derive the island width does not de- 
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Figure 6.2: Action-angle representation of single particle tracking us- 
ing EVOL. The sextupole excitation is 25 amperes, the 
kick amplitude is 5.25 mm and the initial tune 19.415. 
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scribe the experimental situation accurately. In E778 a strong third integer resonance 

driving term distorts the phase space to a triangular shape on which the five islands 

are superimposed. To account for this fact, the correct Hamiltonian must include an 

extra term of the form 

CO6 (34 - 588). (6.35) 

However it is not clear how to calculate the island width in the presence of two 

resonances. So instead, the single resonance approximation was used, which places 

the five islands on a circle in phase space around the origin. 

When the beam is kicked to an appropriate amplitude, some of the protons are 

captured on the stable islands, provided that the sextupoles are turned on to give 

resonant islands. Fig. 6.3 illustrates the relative position of the beam right after the 

kick with respect to the 5 stable islands. Fig. 6.4 is a magnified view of the previous 

plot to observe how the beam size is distributed through the area of the island. This 

particular beam has an emittance of 37r mm-mrad and hence its Q is .56 mm. 

The next logical step is to perform multi-particle simulation in order to create the 

link between the above description and the actual observation. For the simulation, a 

37r mm-mrad beam was used and for each of 4 values of the kick amplitude - 8, 9, 10, 

11 kV - a scan in tune was performed to maximize. the fraction of particles captured 

in stable islands. Table 6.1 contains all cases simulated with EVOL. The simulated 

data were analyzed and quantities such as the capture efficiency and the phases of 

the 5 islands were extracted. The results of this analysis are presented in the last 

section of this chapter. Before this though, the experimental aspect of this study will 

be discussed next. 

The Experiment 

The first aim of the resonance island experiment was to demonstrate the existence 

of the stable nonlinear resonance islands. Capture of particles into stable islands 
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Figure 6.3: Relative position of the kicked beam with respect to the 
five stable islands. 
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Table 6.1: A summary of multiparticle EVOL simulation performed 
for the study of the resonance islands. 

manifests itself by the absence of decoherence. Recall that the average fractional 

part of the tunes of the particles captured into the islands locks onto 2/5. Hence the 

decoherence is defeated and the signal from the centroid of the beam is observable 

over many seconds, in Fig. 6.5 for example. Such signals have been observed to persist 

for about a minute (corresponding to a million turns). 

Fourier analysis of the signal yields a value of 

Y = .400010 * .000005, (6.36) 

consistent with 2/5. Fig. 6.6 is a raw data plot of 21 versus 22 for approximately 4000 

turns starting right before the kicker fired. The uncaptured part of the beam decoheres 

within the first few turns while the captured part forms the 5 stable islands. Fig. 6.7 

displays the same dataset for some thousands of turns taken after some seconds and 

the 5 islands are clearly visible. At last, if one joins the successive points of the above 
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Figure 6.6: Experimental phase space plot, for 4000 turns, starting 
right before the kick. 



139 

I 

Figure 6.7: Experimental phase space plot of the same data as in 
Fig. 6.6, taken some seconds later. 
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plot by straight lines one obtains the plot of Fig. 6.8. Notice that the point lands on 

every second island, confirming the 2/S identification. 

The second aim of this experiment was to quantify the observations and compare 

them with prediction. For this, the capture efficiency was defined as the fraction of 

the non-decohering charge surviving 500 turns, well after the decoherence of uncap- 

tured particles and before appreciable decay has occurred. In Fig. 6.5,the capture 

efficiency is given by the ratio of the amplitude (2) over the amplitude (1). The 

capture efficiency depends on the relation between the beam size and the island size, 

as well as on the angular orientation of the islands in phase space. In order to study 

the capture efficiency experimentally the kick amplitude was kept fixed and the base 

tune was varied. It is shown in the last section, that the capture efficiency becomes 

appreciable when the kick amplitude is approximately equal to the resonance ampli- 

tude. Measurements were taken at different values of the kick amplitude and Table 

6.2 summarizes the different conditions at which data were recorded. After a brief 

description of the analysis tools in the next section, I shall conclude this chapter with 

the presentation of the results. 

Analysis 

If persistent signal analysis has been requested by the user in TEVEX.CMD, 

then in addition to the analysis described in Chapter IV, the following aspects are 

examined and information is reported. 

The user specifies the range of data, after decoherence, over which the persis- 

tent signal analysis takes place. First TEVEX calculates the average value of the 

amplitude of the persistent signal and finds the minimum and maximum values of 

the amplitude in this region. Furthermore, TEVEX calculates the persistent fraction 

which is defined as the ratio of the average of the persistent amplitude over the kick 

amplitude. This quantity was called capture efficiency earlier. The persistent frac- 
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Figure 6.8: A different, representation of the data of the previous plot 
where successive points are now joined by straight lines. 
This plot confirms the 2/5 identiiktion. 
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tion, the kick amplitude, the average amplitude of the persistent signal, the minimum 

and maximum amplitudes in this region, are then recorded in the output. 

Next TEVEX finds the average values of the phase advance and the amplitude of 

each of the 5 islands, as well a.6 their standard deviations. The output includes the 

phase advance, amplitude, standard deviation of the phase and standard deviation 

of the amplitude for each of the 5 islands, ordered in ascending phase. Fig. 6.9 is a 

typical TEVEX output including results of persistent signal analysis. Fig. 6.10 is the 

corresponding graphical output of TEVEX. 

Results 

The results of the analysis of the simulated and the experimental data are pre- 

sented here. First a plot that was done - using EVOL - for reference purposes is 

presented. For each value of the kick amplitude A&, a scan was done through the 

various tune values until the capture efficiency was maximized. In Fig. 6.11 the kick 

amphtude as a function of the base tune which maximizes the captured fraction is 

plotted. This scan was done for a single particle (which in a sense is equivalent to O?r 

emittance beam) and for a beam of emittance 3n mm-mrad. 

Fig. 6.12 came from single particle EVOL tracking [46]. It illustrates the island 

tune Qr as a function of the resonance amplitude A. Tracking shows that the relation 

between these two fundamental quantities of the resonance island structure is 

Qr = 3.8 x lo-‘A;“. (6.37) 

Recall that perturbation calculation predicts that 

Qr = 4.9 x lo-sx” (6.38) 

in very good agreement with the tracking results. 

Next, in Fig. 6.13, EVOL’s prediction on the phases of the 5 islands is presented for 

various horizontal tunes. The various symbols correspond to different kick amplitudes. 
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EYOL simulations. 
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Figure 6.12: Island tune versus resonance amplitude, from single par- 
ticle EVOL tracking. 
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Figure 6.13: Phases of the five islands versus tune as predicted from 
EVOL. 
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This plot is to be compared with Fig. 6.14 which displays the same information as 

derived from the analysis of the experimental data. Notice here that the 5 islands are 

not symmetrically distributed around the center of the phase space. Furthermore, 

the phase difference of an island between experiment and simulation is not the same 

for all 5 islands. 

At last, one of the most important measurable quantities associated with the 

resonance islands, namely the capture efficiency is plotted. Fig. 6.15 illustrates the 

capture efficiency as a function of the horizontal tune for various kick amplitudes - 8, 

9, 10 and 11 kV. These are multi-particle tracking results. As expected, one observes 

the classical resonance response when the kick amplitude as approximately equal to 

the resonance amplitude. The experimental data, for a kick of 9 kV or an amplitude 

of 4.05 mm, are displayed in Fig. 6.16. The curve through the experimental points is 

a guide to the eye. The different symbols differentiate a course scan and a fine scan. 

The maximum persistent response is plotted against the kick voltage in Fig. 6.17 

for both experimental and tracking data. The dashed line is a theoretical fit to the 

data. There is obviously a factor of 2 difference between prediction and reality. This 

discrepancy is due to the sensitivity of the calculation to the lattice function errors, 

particularly phase and beta function errors. To demonstrate the effect of an error on 

the relative location of the kicked beam with respect to the island, five plots similar 

to Fig. 6.4 are given. All these plots illustrate part of the five islands (phase advance 

between .4x2* and .8x2*) corresponding to sextupole strength of 25 amperes and a 

tune of 19.415. Furthermore, two kicked beams superimposed on one of the islands 

are also shown. One of the beams has been kicked with no known errors, while the 

second one has been kicked in the presence of some error. Specifically, the error in 

Fig. 6.18 originates from the fact that the sextupole SF22 was turned off when the 

second (left) beam was kicked. In Fig. 6.19, sextupole SF26 was turned off, leading 

to a somewhat different relative displacement of the two beams, and in Fig. 6.20 
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Figure 6.14: Phases of the fire islands from experimenkd data. 
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Figure 6.15: Capture efficiency versus tune using E\.OL, for 4 different 
kick amplitudes. 
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sextupole SF28 was turned off. In Fig. 6.21 a phase error has been introduced. The 

relative phase advance between sextupoles SF38 and SC22 is different from the design 

phase advance by .04x2*. Notice that the relative displacement of the two beams is, 

as expected, quite considerable. Finally, a phase error half as big as before, that is 

.02x2*, combined with one of the sextupoles turned off (see Fig. 6.22) can lead to an 

effect of the same magnitude as that of Fig. 6.21. 
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CHAPTER VII 

THE DYNAMIC APERTURE EXPERIMENT 

In the presence of nonlinearities the motion of a large-amplitude particle loses its 

regularity and becomes chaotic. Typical phase space trajectories close to the dynamic 

aperture are shown in Fig. 7.1. This plot was generated by computer simulation using 

TEAPOT. 

Predictions on the size of the dynamic aperture for a given lattice configuration 

can be obtained from short-term-of the order of 500 turns- tracking of particles. 

The purpose of this experiment was to measure the dynamic aperture of the Tevatron 

in the presence of the sixteen strong sextupoles, for various sextupole excitations, and 

compare the experimental results with the short-term tracking calculations. 

The Experiment 

The basic experimental procedure consisted of intentionally increasing the hori- 

zontal emittance of the 150 GeV injected beam in the Tevatron until particles were 

lost. The beam ‘heating’ was done by introducing noise into the transverse damper 

system of the Tevatron. The beam size was then observed with the flying wires. Fly- 

ing wire scans were usually made four times per cycle, at 32, 62, 82 and 102 seconds 

after injection. The beam intensity as a function of time is shown in Fig. 7.2. The 
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Figure 7.1: Phase space trajectories close to the dynamic aperture. 
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arrows indicate the times of the flying wire scans. In this case the sextupole strength was 30 amperes. 

The horizontal tune of the fixed-target lattice was set at 19.3715 and the vertical 

tune was set at 19.46. In order to avoid confusion from longitudinal multi-bunch 

instability, the RF voltage was turned off and the RF cavities detuned. The energy 

spread, Q/E, was measured to be approximately 1.5 x IO-‘, hence the 20-bunch 

beam was observed to debunch and spread around the ring. By 32 seconds after 

injection, the beam distribution was fairly uniform as seen from the flying wire scans. 

The noise-modulated damper-magnet was turned on at 32 seconds after injection. 

With no sextupole excitation, beam loss became apparent about 1 minute after turn- 

ing on the dampers. With 30 amperes in the sextupoles however, beam loss began 

almost immediately, as shown in Fig. 7.2. 

Analysis 

Three flying wires were used-two in the horizontal and one in the vertical direc- 

tion. The two horizontal wires were located at HA17 and HC48 while the vertical was 

located at VC48. The points of the two horizontal wires have quite different horieon- 

tal dispersion; HA17 has a dispersion of 5.04 meters, while HC48 has a dispersion of 

1.9 meters. Fig. 7.3 displays a typical set of horizontal beam profiles from the flying 

wire HC48. The four different curves correspond to the four times the wires were 

flown within the cycle. Notice that the initialIy symmetric beam distribution devel- 

ops eventually a left-right asymmetry. This is understood in the sense that computer 

simulations were capable of reproducing the asymmetry, as shown in Fig. 7.1. The 

pronounced triangularity of the same plot, which is actually present in all sextupole 

excitations, illustrates the dominance of the third-integer resonance. 

The vertical-wire profiles revealed no qualitative or quantitative changes, indicat- 

ing that the horizontal-vertical coupling was not appreciable in this experiment. 
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Figure 7.3: Beam profiles taken using the wire profile technique, at 

the location HC48. 
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The full-width at the base of the profile was used to measure the dynamic aperture. 

Two different codes were employed to predict the dynamic aperture from tracking 

calculations. The first one, ART, used a simplified lattice which was perfectly linear 

except for the sixteen special sextupoles. A gaussian distribution of particles in en- 

ergy with standard deviation g = 1.5 x lo-’ was tracked and the dynamic aperture of 

the distribution was calculated after 500 turns. The second code, TEAPOT, used the 

complete fixed-target Tevatron lattice and included the effects of the chromaticity- 

correction sextupoles. It was found that both codes agreed very well in their predic- 

tions, so one can conclude that the chromaticity-correction sextupoles had a negligible 

effect on the aperture. The calculations were repeated for seven different values of 

the sextupole excitations: 0, 10, 15, 20, 25, 30 and 40 amperes. Further TEAPOT 

tracking calculations, done at 15 and 40 amperes in the 16 sextupoles, deemed un- 

likely that the sextupole component in the superconducting Tevatron dipoles had an 

effect on the dynamic aperture. 

Results 

The measured and the calculated dynamic apertures at the positions of the flying 

wires HC48 and HA17 are shown in Fig. 7.4 and Fig. 7.5 respectively. The agreement 

at high sextupole excitations is satisfactory. Two effects complicate the comparison 

between the data points and the curve. First, the calculations were limited to a few 

hundred turns whereas the data points were extracted after millions of turns. Hence 

the curve is really an upper bound. Second, an uncertainty in the closed orbit at the 

sixteen sextupoles affects the machine tune and thus the calculations of the dynamic 

aperture. A shift in the average closed orbit at the sixteen sextupoles of 0.25 mm will 

change the computed dynamic aperture by about 3.5 mm at each sextupole setting. 

This is roughly the deviation between the curve and the data at large sextupole 

currents. 
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Finally the deviation at low sextupole excitations is presumably due to a physical 

aperture, such as a septum magnet. 



CHAPTER VIII 

CONCLUDING REMARKS 

A nonlinear dynamics experiment has been performed in the Tevatron. The vari- 

ous regions of the phase space have been studied an a three-fold way: experimentally, 

numerically and analytically. 

The first purpose of this experiment was to confront the tracking calculations with 

experimental observations, in order to test their reliability. After confirming that the 

Tevatron was essentially linear, smear measurements were performed. From these 

data, the phase space motion of the centroid of the beam was tracked and quantities 

such as the smear and the tuneshift were extracted. Multi-particle nonlinear track- 

ing calculations provided predictions of the same quantities. The agreement between 

experimental results and tracking calculations is excellent, over a wide range of condi- 

tions. One can conclude that tracking calculations, which are important in projecting 

the performance of future accelerators, are reliable. 

Furthermore, perturbation theory, in the form of successive Moser transforma- 

tions, was used to describe analytically this particular region of the phase space. 

The agreement between analytical predictions and observations is very good for the 

low current-low kicker amplitude data points, while it deteriorates as one moves to 

higher currents and kick amplitudes. As expected, nonlinearities of sufficiently low 

strength can be handled perturbatively. 
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The second purpose of E778 was to correlate phenomenological accelerator perfor- 

mance with the value of the smear. The first conclusion to be drawn from the injection 

experiment is that injection diagnosis and correction functioned satisfactorily up to 

the largest sextupole settings, for a typical injection offset of 1.5 mm. Recordings 

of the beam intensity as a function of time revealed significant slow losses above a 

threshold sextupole current. Turning the RF off reduced the losses significantly, while 

a further reduction was achieved by cooling the cavities. 

In the resonance island experiment, E778 demonstrated the existence of stable 

nonlinear resonance islands by directly observing particles captured into them. Sys- 

tematic data taking was restricted to the 2/5 resonance. The capture efficiency was 

measured and compared with simulated results. The factor of two discrepancy be- 

tween calculation and observations can be explained in terms of the sensitivity of the 

measurements to phase errors primarily and beta functions errors. 

Successive Moser transformations up to third order in the sextupole strength gave 

rise to the Hamiltonian describing a system under the influence of the 2/5 isolated res- 

onance. An expression was then derived for the island width, which yielded a number 

reasonably close to single particle tracking prediction. The discrepancy is due to the 

assumption of an isolated resonance. The island tune, however, as predicted from the 

analytical calculation agrees very well with the single particle tracking calculation. 

The agreement that has been established between calculation and observation, 

in the resonance island experiment, is worse than in the smear experiment. While 

in the smear experiment, quantities that vary linearly with the sextupole strength 

were studied, it is observables proportional to s3 that were measured in the resonance 

island experiment. The latter measurements are much more sensitive to errors than 

the former ones, which explains the different degree of agreement. 

In the dynamic aperture experiment, measurements of the dynamic aperture were 

compared with short-term tracking predictions and the agreement is satisfactory. The 
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conclusion is that it is generally hard to predict the dynamic aperture; calculations 

are mostly limited to a few hundred turns whereas data points are usually extracted 

after millions of turns. 

Future plans on the continuation of E778 include the study of the following sub- 

jects. In one degree of freedom, a further study of the resonance islands will be 

attempted, both statically - observation of particle trapping and measurements of 

island width and island tune - and dynamically - exploration of the stability of the 

islands under tune modulation [47]. 

Furthermore the smear measurements will be repeated with different sextupole 

configurations and hence different values of the smear and the tuneshift. 

With the one-degree-of-freedom study more or less completed, the next step is to 

proceed to the more realistic, and hence more relevant question of nonlinear behavior 

in two degrees of freedom. An attempt will be made to repeat the smear and the 

injection experiment, however extraction of the smear and tuneshift parameters from 

the data can not be as straightforward as in the one-degree-of-freedom case. Coupling 

between the two planes complicate the situation resulting in a non gaussian decoher- 

ence. Recall that the assumption of a gaussian decoherence was a critical element 

for the extraction of smear and tuneshift from the one-degree-of-freedom data. In 

two degrees of freedom, extraction of the same information may require a completely 

different approach, such as working with the Fourier spectra of the signals. A sub- 

stantial &line effort will have to be put into this subject, before any conclusions can 

be drawn. 
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APPENDIX A 

Smear due to horizontal-vertical coupling 

It is demonstrated that linear coupling introduces a smear of order Ka/(vz - v,)‘, 

where K is the coupling constant and v., vV are the horizontal and vertical tunes 

respectively. The derivation follows that of Teng in reference [31]. Notice that this 

entire derivation is valid in the weak coupling approximation [32]: the whole treatment 

breaks down near the V, = V# resonance. 

The approximate coupled equations of motion are 

and 

where 

a?’ + v;x = Ky 

y” + v;y = Kz, 

X” = MX 

(A.11 

(A.21 

(A.31 

M= (A.41 

Here 2, g denote the horizontal and vertical displacement of the particle from the 

closed orbit. The prime denotes differentiation with respect to 0 and 

(A.51 
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These equations can be decoupled by diagonalizing M. The eigenvalues of M can be 

found easily, 

v; = v: $ aK (A.61 

and 

I( = v, - aK, (A.71 

where 

Em-( (A.81 

and 

(G 
v: - v, 

2K ’ (A.91 

The normal coordinates u and v are given by 

u=z-ay (A.10) 

and 

v=ar+y (A.11) 

and obey the decoupled equations 

u” + + = 0 (A.12) 

and 

d’ + v,‘v = 0. (A.13) 

Consider now the special solution that corresponds to the case with z-motion only, 

i.e. z = 1, z’ = 0, y = y’ = 0 at 0 = 0. This is 

z = & (co, vue + 2 co8 “.e) (A.14) 

y= 1+as 
-f-- ccos v.e - cos vUe) . (A.15) 

Define ti and p such that 

v,=fi+tf 
2 

(A.16) 
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and 

that is, 

and 

“” = fi- 14. 
2’ 

V” + V” DE- 
2 

Then (A.14) and (A.15) become 

2 = (~06 ;e) cos i7e - ( 1 --aa 
- sin ee 
1+aa 2 ) 

sin iie 

and 

2a 
y= 1+aa 2 (- 

sin ffe 
> 

sin M. 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

Hence I and y are amplitude-modulated oscillations. The amplitudes of the I and y 

oscillations, A. and 4, are given by 

and 

4 = (1 :q (I + a’ + 2a3 cos pe) 

4 = (1 ~~2,, (I - cos pe). 

Then the smear in the horizontal direction due to coupling, a,, is given by 

,,=JiT-KF 

(4 ' 

(A.22) 

(A.23) 

(A.24) 

where A. is given by Eq. (A.22). 

The calculation of the smear 3, will be done in the weak coupling approximation, 

i.e., to lowest nonvanishing order in K/(v. - q,). 

Notice that 
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in the weak coupling approximation. So A, can be expanded in powers of a. The 

result is 

A.=l-aa(l-coslle)+~(l-cospe)+.... 

From here one gets 

(d.J = 1 - aa + $ + . . .) 

(d# = 1 - 2al + T + . . . 

(~.26) 

(A.27) 

(A.28) 

and 

(A;) = 1 - 2~” + 4a’ + . . . (A.29) 

(A.30) 
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APPENDIX B 

Derivation of the expression for the amplitude 

Let a.1 and a.2 be the amplitudes of the betatron oscillations at the location of 

the two BPMs. Also let &, p.1 and (I$ - 6), (4 + 6) denote the beta functions and 

the phases at the two BPMs. The phase 4 is defined as the phase advance in the 

middle of the two BPMs while 6 = q&d/2. If a. is defined to be the geometric mean 

of aal and a,~ then one can prove that 

a: = c112: + cnz121 + cmx:, (B.1) 

where cllr cla and czz are defined by 

03.2) 

03.3) 

cl* = -2 cm (&n) 
sin’ (&II) 

(B.4) 

The displacements of the centroid of the beam from the closed orbit at the two BPMs, 

z1 and z1 are given by 

21 = a.1 cm ($4 - 6) (B.5) 

and 

22 = a,z cm (95 + 6). 

Since ai = a.la.z, a.l,a,l can be expressed in terms of a, as follows 

VW 

a.; = 
a.xms 

(P&d”” 
i = 1,2. (B.7) 



Hence 

034 

(B.9) =s = ,p~g$, cm (4 + 6); 
from these two equations the above expression for the amplitude a. will be derived. 

First 4 is eliminated from the expressions for 21 and 12. Eqs (B.8) and (B.9) give 

y&s= (P.t~~l)‘,‘[C~~(~-6)-cos(~+6)1 (B.lO) 

- - & - 2 = (p.1~~z)I,,2 sin 4 sin 6. 

Solving for sin 4, one gets 

Substituting sin 4 from (B.12) into (B.8) and then solving for cos 4 leads to, 

(B.ll) 

(B.13) 

By squaring (B.12) and (B.13) and summing one gets the desired expression for the 

amplitude 

(B.14) 

a: = c112: + C12ZlZ~ + c~~z:. (B.15) 
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APPENDIX C 

Derivation of the expression for the phase advance 

The displacements from the closed orbit at the two BPMs are 

21 = (pnlp12)l14 si=(d - 6) (C.1) 

and 

z2 = (p=lp=2)va G= (4 + 0 (C.2) 

Let ~1, z2 be defined as 

.z; = s i = 1,2. 

Then 

z1~2 = (p.l&4 si=(4 f 6) (C.4) 

(C.3) 

and 

(II+ zz)/ Cm 6 = [sin (4 - 6) + sin (4 + 6)] sin 6 = tan ~ 
(2~ - %I)/ sin 6 [sin (4 + 6) - sin (4 - 6)] cos 6 ’ (C.5) 

Hence 

~4 = arctan (ZI + a)/ cos 6 

(22 - .q)/ sin 6 ’ (C.6) 



180 

APPENDIX D 

Derivation of decoherence due to nonlinearity 

Let a and q5 be the amplitude and phase of the betatron oscillation at a given point 

in the accelerator. The amplitude a is defined as G/u=, where E is the Courant- 

Snyder invariant and a, is the rms beam size. Then the displacement z is 

1: = ar= CO6 (27rvn + rj), 

where n is the turn number. 4 is the phase advance at n = 0. 

The transverse distribution of particles in the beam, expressed in terms of + and 

2’ is 

P ~(2, +‘)dzdt’ = Ge - &;irz2 + (a2 + Pf’)*l&.ZI 
e 

and in amplitude-angle coordinates 

dzdz’ = +dadd, 
P 

thus 

p(a,+)dad# = &~dadqk 

Suppose now that at n = 0 the beam is kicked by an angle AZ’. This kick corre- 

sponds to a shift in amplitude of magnitude a0 = /?Az’/u*, and the new distribution 

function becomes 

P(%d) = $e -@-?Q 

1 _ ( a2 + a; - 2aao cm $5 

= ziae 
2 
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Assuming a quadratic tune dependence on amplitude 

one finds that the phase shift A~#(a,n) of a particle of amplitude a is 

A~#(a,n) = 2?rAvn = -2rr~==n. 

The centroid of the beam after IE turns, z(n), is 

z(n) = Id=, A~)P(=, W=d4 

1 m z---Q 
J 2n = 0 

da&‘~ /lx d4cos [27rvg~ + Ad(=,n) + c#+=~~‘=~ Q+ 

0. - =- 
I 2?r 0 

da,,.~T,l- 

0 
d&m (27won + Ad) cos 4 

- sin (2~~7~ + A4) sin +]e==o co’ 4 

=- 
1 

,“,: lrn daa e 
2; a; 

cos (2avon - 2n/L&) 
I 

2r &#, c,,s +==O cos ‘#’ 
0 

cz -- 
I 2x 0 

m d&e-v sin (2xvon - 27rp=%) i** d4 sin de==0 ‘OS 4. 

With the use of the identity 

,rcos4 - 
3 ml,(T) 

m=-ca 

the above formula becomes 

z(n) = 5 /- daa’e-v cm (27rv,px - 2apa’n) c Z,,,(aa,) isx ddcos 4eirnd 
2n cl m 

,“: /,- d&e-~ sin (2 -- won - 2rrpa’n) c Z,.,,(aa~) /o’* dd sin deimd. 
m 

But 

and 

‘& Z,,,(aao) jo’= dqkimd CO6 q+ = ?r(Z1(aao) + z-l(aao)] = 27rZ1(aao) 

5 I,,,( au,,) 12- d&“‘=d sin q5 = 3ri[Zl(aao) - Z-l(aa~)] = 0. 
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Hence 
2 1 

z(n) = o* J 0 
-da&+ cos(27rvon - 2xpaan)Z,(aa,,) 

= gse-$Re ( ei2Tuon /,- da&-aYl/2 + i2w~)~l(aao)} 

= c=e-$& ( ei2Tvon /,- d,&‘e-a’(1/2 + i2~P~)(p)J,(i,,,,)} , 

where the relation between I,,, and J,,, has been used 

Zm(t) = i-*.7,(iz). 

Now one can evaluate the last integral above with the use of formula 6.631.4 from 

Gradshteyn and Rhydk 

J 
Co zY+le-a”2J -P2/4a. 

0 v&Id+ = (2,q:+l e 

In this case Y = 1, a = l/2 + i27rpn and p = ia and so, 

where B is defined as follows 

SO 

e = 4Tpn. 

azao 
= (I+ ey 

exp [-$A] [(1- e2)cos (2svon - :A) 

+2e sin 
( 

=?I e 
27rvon - -- 

2 l+ez )I 
=~=~(,,[~c,s(2,,n-~~)+~sin~~van-~~)] 

=i e 
= u&n) cm 

( 
2avon- -~ - 

2 i+ea 
2arctanO , 

1 
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where the decoherence factor A(n) is given by 

A(n) = 6-p [-&$E] 
and the amplitude of the centroid I is 

L(n) = aoA(n). 

Hence the decoherence factor A(n) is 

A(n) = ’ 
1 

1 + (47rpn)2 1 1+ (47rjLn)l . 

For small kicks, a0 << 1, 

A(n) N ’ 
1 + (47rfin)a ’ 

while for a kick much greater than the beam size, a0 >> I 

A(n) 2: e -+(4rrpnao)’ 

Hence the decoherence rate R, defined by (4.37) is given by 

R = 47rpao. CD.11 
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APPENDIX E 

TEVEX Subroutines 

A. RDCMD 

1. Subroutine RDCMD first opens the output fiIe TEVEX.OUT (unit 7) which 

wiII develop to a record of the data analysis. 

2. Next it opens the input fle TEVEX.CMD and reads the following information. 

2a. Input control parameters 

al. ifmt specifies the input format to be read. Six different formats have been 

considered. For E778 ASCII files, ifmt=O. For E778 shared memory data, ifmt=l. 

For EVOL data, ifmt=2. For TPOT-TeVbpm data, ifmt=3. For TEAPOT data, 

ifmt=4 and for camac 5 (resonant BPM) data, ifmt=5. 

a2. &ad is the number of header lines stripped off the input files. Ihead=S or 12 for 

E778 ASCII files, ihead=l6 for EVOL data, ihead= for TEAPOT data, and ihead 

could be anything for the remaining cases. 

a3. Bnoise, expressed in mm, determines the lowest bound for the real data to start, 

e.g., bnoise=0.2. 

2b. Fast pass default values 
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bl. botch, logical variable. If it is true the input filenames are read from INFILS. 

b2. fast, logical variable. If it is true, it invokes the default values in the array, 

b3. ifaat(f-6), instead of prompting the user. All the above are to be used for a fast 

pass through the data. 

b4. in& contains the BATCH input filenames. 

2c. Filtering input and output data 

cl. filtre, logical variable. If it is true, it filters tune values from qmin to qmaz 

from both horizontal position raw data and from the intensity data. 

~2. qmin is the lower limit of the filtered range. 

~3. qmaz is the upper limit of the filtered range. 

2d. Persistent signal analysis 

dl. per&g, logical variable. If it is true, it turns the persistent signal analysis on. 

d2. npsmin is the lower limit of a post-decoherence range where the persistent signal 

analysis will be done. 

d3. npsmaz is the upper limit of the range for persistent signal analysis. 

2e. Discrete Fourier transform parameters 

el. dodft, logical variable. If it is true, it turns the discrete Fourier transform 

(DFT) analysis on. 

e2. jtl/jtr are the left and right margins for the DFT plots. 
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e3. ftmin is the lower bound for the DFT plots. If FTMIN > 0.0 a logarithmic scale 

is used. 

e4. ftmaz is the upper vertical bound of the DFT plot. 

e5. mmpar is the maximum harmonic order plotted. 

e6. iqf/iq2 specify which of the following three ways to define the horizontal/vertical 

tunes to use for Qr/Qs, in the harmonic analysis. Hence, if IQl/IQ2 = 0, the ratio 

of the number of phase space turns over the number of machine turns is used. If 

IQl/IQZ = 1 the highest peak in the DFT is used, and if IQl/IQ2 = 2 the second 

highest peak in the DFT is employed. 

e7. senhar denotes the threshold DFT response to signify a harmonic peak. 

2f. Slow phase parameters 

fl. n&rob. On some graphs only every NSTROB’th turn is plotted. 

f2. numer/norder. The resonance tune is Q... = NUMERINORDER. 

f3. dfitol denotes the tolerance for the BPM glitches and/or phase discontinuities and 

it is expressed in units of 2x. 

2g. Idealised lattice parameters 

gl. beta(q, yr, zs, ys) are the design values of the horizontal and vertical beta 

functions at the position of the two BPMs, HF42 and HF44. 

g2. ficell is the phase advance per cell in degrees. 

g3. alfa(zl, yr, zs, ya) are the design alphas at the position of the monitors. 
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2h. Test data parameters 

hl. bit& is the assumed bit size of the BPMs. 

h2. npstrt/npfin are the start and finish particles whose coordinates are summed. 

2i. Fitting control 

il. man. This parameter assumes only two values, 0 or 1. If it is O(1) it turns off 

(on) some manual control of the optimization. 

i2. itmz is the maximum number of HYDRA steps before quitting. 

i3. itw is the number of HYDRA steps per write. 

i4. pfin multiplies single coordinates of the initial matrix. 

i5. pfac is the multiplier used when shaking up the solution. 

i6. ~901 is the goal tolerance. 

2j. Graphical output control 

jl. zlvt is true if data from the first BPM are plotted versus turn number (uses 

NSKIP). 

j2. azvt is true if the amplitude is plotted versus turn number. 

j3. azv& is true if amplitude is plotted versus phase. 

j4. svt is true if smear is plotted versus last turn number fitted. 

j5. qmt is true if tune is plotted versus last turn number fitted. 

j6. fitvt is true if the fitted parameters are plotted versus last turn number fitted. 

3. The next function of RDCMD is to do logic initialization. In particular, it 

opens the tile INFILS if BATCH is true, it initializes the logarithmic scale if FTMIN 
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< 0.0 and it initializes the shared memory if IFMT = 1. 

4. Finally it writes on the screen and in TEVEX.OUT the values of all the pa- 

rameters contained in TEVEX.CMD. 

B. FORM0 

Subroutine FORM0 reads the data from the 1987 E778 ASCII files. 

1. FORM0 prompts the user for input fdename with “Enter horizontal turn-by-turn 

filename for input” and “Enter vertical input filename”. The input file with the hor- 

izontal data is unit 8 while the vertical data are in unit 9. 

2. Next, the first IHEAD lines from the files are discarded and FORM0 reads the 

recordings of the two horizontal and two vertical BPMs, tl, z1 and yl, ya for NTMX 

turns. The parameter NTMX belongs to the parameter list fde of TEVEX, TEVEX- 

PAR.H, and has been set equal to 4096. If there are no vertical data, which is the 

case through out this whole work, y1 and yt are set equal to zero. 

3. The first turn of significant data is determined next, as the turn number with cor- 

responding position larger than BNOISE. If such a turn does not exist error messages 

and instructions follow. 

4. Finally the first line of data together with the line where real data start (z > 

BNOISE) are recorded in TEVEX.OUT as well as on the screen. 

C. FORM1 

FORM1 reads data from the shared memory. 

1. First FORM1 warns the user that a batch job cannot be submitted with shared 

memory data. 

2. A second warning is that there is no capability of analyzing vertical data at this 

point. A future upgrade will remove this problem. 

3. The answer to the question UEnter data input name” provides FORM1 with the 
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horizontal data filename, e.g. TAPE3.43. 

4. The search for the first turn of significant data, MINNT, is done using the BNOISE 

criterion. 

5. FORM1 also finds the last turn of significant data, MAXNT. 

6. The first and the last turn of significant data are recorded on TEVEX.OUT and 

on the screen. 

D. FORM2 

FORM2 reads simulated data from EVOL. 

1. FORM2 first gets the input filename from the user. 

2. The first IHEAD lines are discarded. 

3. The current and the horizontal and vertical positions at the location of the two 

monitors are read for every turn. The units of the above quantities are mm. 

4. The first and the last turn of data are recorded in TEVEX.OUT and are displayed 

on the screen. 

F. FORM4 

FORM4 reads simulated data from TEAPOT. 

1. The input filename is supplied by the user. 

2. The first IHEAD lines are stripped off. 

3. The horizontal position z, and the angle of deflection z’, as well as the vertical 

position y, and the angle y’, are read for every turn. 

4. The above information is translated into horizontal and vertical positions at the 

location of the two monitors. 

5. The first line of data is recorded in TEVEX.OUT and on the screen. 
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G. FORM5 

FORM5 reads data recorded by camac 5, the resonant Tevatron BPMs. This 

format can only be used on the SUN Workstations. 

H. NOLOW 

Subroutine NOLOW filters the tune values from QMIN to QMAX from the raw 

position and intensity data. 

1. Key constants are set-up first. 

2. Filter BPM data, find and measure “synchrotron” tunes and amplitudes with the 

use of FILTER and PKPWR. 

I. PARAMS 

The function of this subroutine is to get the fitting level and the fitting do-loop 

parameters. 

1. At this point TEVEX presents four options to the user: 

“Level controls the raw BPM data conversion 

Level = 0 use raw data 

Level = 1 only subtract average closed orbit offsets 

Level = 2 fit BPM betas, phases and closed orbit offsets 

Level = 3 as 2 and fit for gaussian decoherence 

Enter the level chosen (eg 3): ” 

2. Once the choice has been made, the chosen level is recorded on TEVEX.OUT. 

3. The first turn number for the range of interest is specified next as follows: TEVEX 

informs the user of the range of significant data. If the chosen level is the third one, 

then the analysis has to start from the first turn of significant data. If the chosen level 

is other than 3 and FAST is true, then the starting value has already been specified 
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in TEVEX.CMD. A third possibility is to supply the value by hand, by answering 

the appropriate question. The starting turn number must be between the first turn 

of significant data and the last turn minus 10. 

4. The do-loop variables for the last turn number in the range of interest are specified 

here. If FAST is true, the range values have been chosen in TEVEX.CMD. Otherwise 

the user supplies the numbers by hand by answering the appropriate questions. 

5. Finally, a check of the last turn do-loop range values concludes the function of 

PARAMS. The criteria for correct values are that the starting turn number of the 

final do-loop must be greater or equal to the starting turn of the analysis plus 5, and 

it must also be less than the last turn of the analysis. Also the increment must be 

positive. At last, the difference between the final do-loop turn number and the initial 

one, must be greater than the increment for the do-loop to start. 

J. STATS 

STATS finds the averages and the limits of the digitized data in the range be- 

tween the first turn for the analysis and the starting value for the last turn do-loop. 

SpecificW it c&&tes (=I), (4, (YI), (YZ) and zmin, zrnsl, ytin, Y=,. 

K. PREPRO 

This subroutine prepares the fitting vectors, PSOLX and PSOLY. 

1. If the chosen level is 0 then the components of the fitting vector PSOLX are: 

psolx(1) = 9 

psolx(2) = 9 

4 psolx(3) = + 

psolx(4) = 
d- 2 

psolx(5) = 0 
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and 

ndimx = 0. 

Similar equations hold true for the vertical direction. Recall that 4.a is the design 

value of the phase advance per cell, and &I, p.2 are the design values of the horizontal 

beta functions at the two monitors. 

2. If the analysis level is 1 then PSOLX becomes: 

PsoW) = (n1) 

psoh(2) = (+1) 

4 psolx(3) = +f 

psolx(4) = 
d- 

&I 

P rl 

psolx(5) = 0 

and 

ndimx=O 

Again similar equations can be written for the vertical direction. 

3. If the level is equal to 2 then: 

PSOLx(l) = (21) 

PSOlx(2) = (a) 

*&n 
psoW3) = -&- 

psolx(4) = P 

d- 2 

psolx(5) = 0 

and 

ndimx=4 
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and the same for y. 

4. Finally if the level equals 3 then PSOLX is: 

psolx(1) = (21) 

psolx(2) = (+1) 

dkdl psolx(3) = 360 

psolx(4) = P 

d- 72 

psoW5) = (nCt9$’ 

and 

ndimx = 5, 

where n.f is the final turn of the calculations and n; is the turn number where data 

start. 
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APPENDIX F 

E778 Hardware 

The second run of E778 required more and higher precision data than the first 

run, and the limited machine time available implied highly efficient data taking, 

monitoring and logging. Hence a many-turn beam data acquisition and analysis 

system was constructed [29]. 

From the Tevatron beam position pickups, the signals were directed to two front 

end electronics. The first, the standard Fermilab BPM front end, gave direct hori- 

zontal (HF42 and HF44), vertical (VF43 and VF45) and intensity (I-45) signals. The 

second was a peak-sensing circuit which gave less noisy signals. 

The signals were digitized with two LeCroy 6810 5-Mha, 12-bit transient digitisers, 

each with .5 Megasamples of onboard memory. The camac-based LeCroy modules 

were controlled by a Sun 3/140 workstation via the Sun’s VME backplane and a CES 

CBD/8210 cam&c. branch driver. Fig. F.l illustrates the cabling from the BPMs - 

located at the service building F4 - to the Sun 3/140 (Fig), also located at F4. 

Control and data flow to the main control room (MCR) workstation (Myrtle) were 

through the Suns’ ethernet links. (See Figs F.2 and F.3. In FO, the cable from the 

Schottky rack to cables 13 and 14 is RG58.) 

Information such as kicker voltages, tune settings, sextupoles currents etc, was fed 

to the system from the Tevatron control system through a serial link. Data context 

information and comments were logged to a disk fifo buffer and to cartridge tape for 
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long term storage. More details on the hardware of this structure, as well as the 

software - almost entirely written in C - can be found in reference [29]. 
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